scholarly journals Investigation of Chemical and Physical Surface Changes of Thermally Conditioned Glass Fibres

Fibers ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 7
Author(s):  
Peter Jenkins ◽  
Liu Yang ◽  
James Thomason ◽  
Xinyong Chen ◽  
John Watts ◽  
...  

A number of analytical techniques were applied to investigate changes to the surface of unsized boron-free E-glass fibres after thermal conditioning at temperatures up to 700 °C. Novel systematic studies were carried out to investigate the fundamental strength loss from thermal conditioning. Surface chemical changes studied using X-ray photoelectron spectroscopy (XPS) showed a consistent increase in the surface concentration of calcium with increasing conditioning temperature, although this did not correlate well with a loss of fibre strength. Scanning electron microscopy fractography confirmed the difficulty of analysing failure-inducing flaws on individual fibre fracture surfaces. Analysis by atomic force microscopy (AFM) did not reveal any likely surface cracks or flaws of significant dimensions to cause failure: the observation of cracks before fibre fracture may not be possible when using this technique. Fibre surface roughness increased over the whole range of the conditioning temperatures investigated. Although surface roughness did not correlate precisely with fibre strength, there was a clear inverse relationship at temperatures exceeding 400 °C. The interpretation of the surface topography that formed between 400–700 °C produced evidence that the initial stage of phase separation by spinodal decomposition may have occurred at the fibre surface.

Fibers ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 27 ◽  
Author(s):  
Peter Jenkins ◽  
Liu Yang ◽  
James Thomason

The tensile strength of single water-sized E-glass fibres that were thermally conditioned, either in air or under vacuum, was investigated. The vacuum removed water from the conditioning atmosphere, as well as the fibre surfaces, at room temperature but retained tensile strength of fibres treated in the absence of water were not significantly different from those thermally conditioned in a standard air furnace. The results suggest that water, either in the treatment atmosphere or on the surface of the fibres, is not a significant factor in fundamental glass fibre strength loss at an elevated temperature. It may, therefore, be necessary to consider alternative theories to explain this strength loss.


Author(s):  
M.P. Thomas ◽  
A.R. Waugh ◽  
M.J. Southon ◽  
Brian Ralph

It is well known that ion-induced sputtering from numerous multicomponent targets results in marked changes in surface composition (1). Preferential removal of one component results in surface enrichment in the less easily removed species. In this investigation, a time-of-flight atom-probe field-ion microscope A.P. together with X-ray photoelectron spectroscopy XPS have been used to monitor alterations in surface composition of Ni3Al single crystals under argon ion bombardment. The A.P. has been chosen for this investigation because of its ability using field evaporation to depth profile through a sputtered surface without the need for further ion sputtering. Incident ion energy and ion dose have been selected to reflect conditions widely used in surface analytical techniques for cleaning and depth-profiling of samples, typically 3keV and 1018 - 1020 ion m-2.


2012 ◽  
Vol 1376 ◽  
Author(s):  
P. Silva-Bermudez ◽  
S. Muhl ◽  
M. Rivera ◽  
S. E. Rodil

ABSTRACTIn the present work, the adsorption of albumin and fibrinogen on Ta, Nb, Ti and Zr oxidesthin films deposited on Si (100) wafers by magnetron sputtering was studied in order to get a better understanding of the correlation among the surface properties of these oxides and the protein adsorption phenomena on their surfaces. The surface energy, hydrophobicity, chemical composition, roughness and atomic order of the films were characterized. The films were immersedfor 45 minutes in single protein solutions; either albumin or fibrinogenand the adsorbed protein layer on the films was studied ex-situ in a dry ambient using bothX-ray photoelectron spectroscopy and atomic force microscopy.The adsorption of albumin and fibrinogen on the films modified the surface morphology and decreased the surface roughness for all the four different metal oxides. The XPS results confirmed the presence of the protein on the surface of the films and showed that the two proteins studied were adsorbed without undergoing a major chemical decomposition. A correlation between the surface roughness,the polar component of the surface energy of the films and the atomic percentage of nitrogen on the films after protein adsorption, an indirect signal of the amount of protein adsorbed, was found for albumin and fibrinogen adsorption on Ta, Nb and Ti oxides; the largest the roughness or the polar component the largest amount of adsorbed protein.


2021 ◽  
Vol 314 ◽  
pp. 302-306
Author(s):  
Quoc Toan Le ◽  
E. Kesters ◽  
M. Doms ◽  
Efrain Altamirano Sánchez

Different types of ALD Ru films, including as-deposited, annealed Ru, without and with a subsequent CMP step, were used for wet etching study. With respect to the as-deposited Ru, the etching rate of the annealed Ru film in metal-free chemical mixtures (pH = 7-9) was found to decrease substantially. X-ray photoelectron spectroscopy characterization indicated that this behavior could be explained by the presence of the formation of RuOx (x = 2,3) caused by the anneal. A short CMP step applied to the annealed Ru wafer removed the surface RuOx, at least partially, resulting in a significant increase of the etching rate. The change in surface roughness was quantified using atomic force microscopy.


2012 ◽  
Vol 27 (2) ◽  
pp. 335-342 ◽  
Author(s):  
Xiling Zeng ◽  
Shiyu Fu ◽  
Elias Retulainen ◽  
Sabine Heinemann

Abstract Fibre deformations have a significant effect on fibre strength and sheet properties. There is little information, however, on the kinds of deformations different types of treatments induce and how they affect the fibre strength. In the present study, first-thinning bleached pine kraft pulp was treated with three mechanical devices: a wing defibrator (high consistency treatment), an E-compactor (high consistency treatment) and a conventional Valley beater (low consistency treatment). The fibre properties were determined with a fibre analyser. The fibre cutting induced by the hydrochloric acid (HCl) treatment (‘cleavage index’) was used for the quantification of the fibre defects. The zero-span tensile strength of dry and wet paper was used to estimate the fibre strength. Each mechanical treatment induced fibre deformations in its own characteristic way. The wing defibrator induced fibre kinks and curl whereas the E-compactor, in addition to fibre cutting, favoured kinks. Low consistency Valley beating straightened the fibres and released fibre deformations. The fibre deformations, especially the number of kinks, correlated well with the wet zero-span tensile strength. The cleavage index had some correlation with the zero-span tensile strength, but the results indicated that the cleavage index may not be directly related to the mechanical defects in fibres but depend more on the chemical conditions on the fibre surface and the wall structure.


1994 ◽  
Vol 367 ◽  
Author(s):  
P.O. Pettersson ◽  
R.J. Miles ◽  
T.C. Mcgill

AbstractWe present the results of electron beam assisted molecular beam epitaxy (EB-MBE) on the growth mode of silicon on CaF2/Si(111). By irradiating the CaF2 surface with low energy electrons, the fluorine is desorbed, leaving an ordered array of F-centers behind. Using atomic force microscopy (AFM), we do not detect any surface damage on the CaF2 layer due to the low energy electron irradiation. The surface free energy of the CaF2 is raised due to the F-center array and the subsequent silicon layer is smoother. Using AFM and X-ray photoelectron spectroscopy (XPS), we find an optimal range of exposures for high temperature (650°C) growth of the silicon overlayer that minimizes surface roughness of the silicon overlayer and we present a simple model based on geometrical thermodynamics to explain this.We observed a similar optimal range of exposures that minimizes the surface roughness for medium (575°C) and low (500°C) growth temperatures of the silicon layer. We present an explanation for this growth mode based on kinetics.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 378 ◽  
Author(s):  
Albena Daskalova ◽  
Irina Bliznakova ◽  
Liliya Angelova ◽  
Anton Trifonov ◽  
Heidi Declercq ◽  
...  

Surface functionalization introduced by precisely-defined surface structures depended on the surface texture and quality. Laser treatment is an advanced, non-contact technique for improving the biomaterials surface characteristics. In this study, femtosecond laser modification was applied to fabricate diverse structures on biodegradable polymer thin films and their ceramic blends. The influences of key laser processing parameters like laser energy and a number of applied laser pulses (N) over laser-treated surfaces were investigated. The modification of surface roughness was determined by atomic force microscopy (AFM). The surface roughness (Rrms) increased from approximately 0.5 to nearly 3 µm. The roughness changed with increasing laser energy and a number of applied laser pulses (N). The induced morphologies with different laser parameters were compared via Scanning electron microscopy (SEM) and confocal microscopy analysis. The chemical composition of exposed surfaces was examined by FTIR, X-ray photoelectron spectroscopy (XPS), and XRD analysis. This work illustrates the capacity of the laser microstructuring method for surface functionalization with possible applications in improvement of cellular attachment and orientation. Cells exhibited an extended shape along laser-modified surface zones compared to non-structured areas and demonstrated parallel alignment to the created structures. We examined laser-material interaction, microstructural outgrowth, and surface-treatment effect. By comparing the experimental results, it can be summarized that considerable processing quality can be obtained with femtosecond laser structuring.


2012 ◽  
Vol 253-255 ◽  
pp. 975-979
Author(s):  
Yan Ling Bao ◽  
Guang Ze Dai

The PAN-based carbon fiber (CF) was choosen as a bio-carrier in waste water treatment process, which was modified by anodic oxidation and electropolymerization using sulphuric acid and maleic anhydride (MA) respectively. The morphology and propeties of CF surface were characterized by laser confocal microsopy (LCM), X-ray photoelectron spectroscopy (XPS) and the degree of moisture (DM), and the consequence of biocompatibility nature on CF surface was therefore indicated by immobilization results of microorganisms. It shows that the surface hydrophilicity, oxygen containing groups and surface roughness of CF would contribute greatly to improve the immobilization ability of microorganisms on CF surface. And acid anodic oxidation is more effective on microorganism immobilization than MA electropolymerization.


2000 ◽  
Vol 113 (20) ◽  
pp. 9233-9238 ◽  
Author(s):  
James N. O’Shea ◽  
Joachim Schnadt ◽  
Staffan Andersson ◽  
Luc Patthey ◽  
Steffen Rost ◽  
...  

Coatings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 397 ◽  
Author(s):  
Jinguang Wei ◽  
Qiuqin Lin ◽  
Yahui Zhang ◽  
Wenji Yu ◽  
Chung-Yun Hse ◽  
...  

Coating quality for scrimber products against exterior conditions is largely dependent on the surface properties. The wettability, morphology, and chemical composition of pine scrimber surfaces were investigated to better understand the surface properties. The scrimber was found to be a hydrophilic material because the water contact angles were less than 90°. The panels with a density of 1.20 g/cm3 had the largest angle change rate (k = 0.212). As the panel density increased, the instantaneous contact angle of each test liquid (i.e., water, formamide, and diiodomethane) on the panels decreased, and so did surface free energy. Panels with higher density showed lower surface roughness. Surface roughness across the wood grain was greater than that along the grain. SEM observations showed the high-density panels had a smoother surface with fewer irregular grooves in comparison with the low-density panels. X-ray photoelectron spectroscopy (XPS) analysis indicated that more unoxygenated groups appeared on the surface of high-density panels.


Sign in / Sign up

Export Citation Format

Share Document