scholarly journals Characterization of Serpentines from Different Regions by Transmission Electron Microscopy, X-ray Diffraction, BET Specific Surface Area and Vibrational and Electronic Spectroscopy

Fibers ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 47 ◽  
Author(s):  
Miguel A. Rivero Crespo ◽  
Dolores Pereira Gómez ◽  
María V. Villa García ◽  
José M. Gallardo Amores ◽  
Vicente Sánchez Escribano

Serpentinite powdered samples from four different regions were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), SBET and porosity measurements, UV-Vis and Infrared Spectroscopy of the skeletal region and surface OH groups. SEM micrographs of the samples showed a prismatic morphology when the lizardite was the predominant phase, while if antigorite phase prevailed, the particles had a globular morphology. The few fibrous-shaped particles, only observed by SEM and weakly detected by XRD on MO-9C and MO13 samples, were characteristic of the chrysotile phase. All diffraction XRD patterns showed characteristic peaks of antigorite and lizardite serpentine phases, with crystallite sizes in the range 310–250 Å and with different degrees and types of carbonation processes, one derived from the transformation of the serpentine, generating dolomite, and another by direct precipitation of calcite. The SBET reached values between 38–24 m2∙g−1 for the samples less crystalline, in agreement with the XRD patterns, while those with a higher degree of crystallinity gave values close to 8–9 m2∙g−1. In the UV region all electronic spectra were dominated by the absorption edge due to O2− → Si4+ charge transfer transition, with Si4+ in tetrahedral coordination, corresponding to a band gap energy of ca 4.7 eV. In the visible region, 800–350 nm, the spectra of all samples, except Donai, presented at least two weak and broad absorptions centred in the range 650–800 and 550–360 nm, associated with the presence of Fe3+ ions from the oxidation of structural Fe2+ ions in the serpentinites ((MgxFe2+1−x)3Si2O5(OH)4). The relative intensity of the IR bands corresponding to the stretching modes of the OH’s groups indicated the prevalence of one of the two phases, antigorite or lizardite, in the serpentinites. We proposed that the different relative intensity of these bands could be considered as diagnostic to differentiate the predominance of these phases in serpentinites.

2006 ◽  
Vol 517 ◽  
pp. 89-92
Author(s):  
M.F. Hassan ◽  
N.H. Idris ◽  
S.R. Majid ◽  
Tan Winie ◽  
A.S.A. Khiar ◽  
...  

The plasticized PEO-KOH films have been investigated using the electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The conductivity of films increased by about 2 orders of magnitude from 10-5 to 10-3 S cm-1 at r.t. on addition of 0.5 wt.% of ethylene sulphite (ES). The degree of crystallinity was calculated from the XRD patterns. SEM micrographs show that the plasticized films were porous. The highest conductivity of plasticized films at r.t. was (1.3 ± 0.2) x 10-3 S cm-1 for the film with 0.5 wt.% of ES content. The number density of mobile ions was shown to increase indicating that ES has dissociated more salts into ions and thereby increasing the conductivity.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1712
Author(s):  
Appusamy Muthukrishnaraj ◽  
Salma Ahmed Al-Zahrani ◽  
Ahmed Al Otaibi ◽  
Semmedu Selvaraj Kalaivani ◽  
Ayyar Manikandan ◽  
...  

Towards the utilization of Cu2O nanomaterial for the degradation of industrial dye pollutants such as methylene blue and methyl orange, the graphene-incorporated Cu2O nanocomposites (GCC) were developed via a precipitation method. Using Hummers method, the grapheme oxide (GO) was initially synthesized. The varying weight percentages (1–4 wt %) of GO was incorporated along with the precipitation of Cu2O catalyst. Various characterization techniques such as Fourier-transform infra-red (FT-IR), X-ray diffraction (XRD), UV–visible diffused reflectance (UV-DRS), Raman spectroscopy, thermo gravimetric analysis (TGA), energy-dispersive X-ray analysis (EDX), and electro chemical impedance (EIS) were followed for characterization. The cabbage-like morphology of the developed Cu2O and its composites were ascertained from field-emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HR-TEM). In addition, the growth mechanism was also proposed. The results infer that 2 wt % GO-incorporated Cu2O composites shows the highest value of degradation efficiency (97.9% and 96.1%) for MB and MO at 160 and 220 min, respectively. Further, its catalytic performance over visible region (red shift) was also enhanced to an appreciable extent, when compared with that of other samples.


2021 ◽  
Vol 116 ◽  
pp. 5-14
Author(s):  
Marta Babicka ◽  
Magdalena Woźniak ◽  
Kinga Szentner ◽  
Sławomir Borysiak ◽  
Krzysztof Dwiecki ◽  
...  

The aim of this study was to compare parameters of nanocellulose obtained by two different procedures: hydrolysis with ionic liquids (1-allyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium acetate) and hydrolysis with ionic liquids in combination with hydrolysis using a cellulolytic enzyme from Trichoderma reesei. Avicel cellulose was treated with two ionic liquids: 1-allyl-3-methylimidazolium chloride (AmimCl) and 1-ethyl 3-methylimidazolium acetate (EmimOAc). In the two-step hydrolysis cellulose after treatment with ionic liquids was additionally hydrolyzed with a solution of enzymes. In order to characterize the obtained material, the following analyses were used: infrared spectroscopy, X-ray diffraction and dynamic light scattering. The results indicated that cellulose obtained by two-step nanocellulose production methods (first hydrolysis with ionic liquids and then with enzymes) showed similar parameters (particle size, XRD patterns and degree of crystallinity) as the material after the one-step process, i.e. hydrolysis with ionic liquids.


1997 ◽  
Vol 12 (3) ◽  
pp. 651-656 ◽  
Author(s):  
P. K. Nair ◽  
L. Huang ◽  
M. T. S. Nair ◽  
Hailin Hu ◽  
E. A. Meyers ◽  
...  

Formation of the ternary compound Cu3BiS3 during annealing of chemically deposited CuS (∼0.3 μm) films on Bi2S3 film (∼0.1 μm on glass substrate) is reported. The interfacial atomic diffusion leading to the formation of the compound during the annealing is indicated in x-ray photoelectron depth profile spectra of the films. The formation of Cu3BiS3 (Wittichenite, JCPDS 9-488) is confirmed by the x-ray diffraction (XRD) patterns. The films are optically absorbing in the entire visible region (absorption coefficient 4 × 104 cm−1 at 2.48 eV or 0.50 μm) and are p-type with electrical conductivity of 102−103 Ω−1 cm−1. Potential applications of these films as optical coatings in the control of solar energy transmittance through glazings and as a p-type absorber film in solar cell structures are indicated.


2017 ◽  
Vol 889 ◽  
pp. 234-238
Author(s):  
Mohd Hasmizam Razali ◽  
Nur Arifah Ismail ◽  
Mahani Yusoff

Pure and F doped TiO2 nanotubes was synthesized using simple hydrothermal method. The hydrothermal was conducted using teflon-liner autoclave and maintained at 150oC for 24 hours. The characterization of synthesised product was carried out using x-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive of x-ray spectroscopy (EDX) and ultra violet – visible light diffuse reflectance spectroscopy (UV-Vis DRS) for band gap measurements. XRD patterns indicated that anatase TiO2 phase was remained after F doping suggested that fluorine was highly dispersed into TiO2 by substituted with O in the TiO2 lattice to formed TiO2-xFx solid solution. Morphology investigation using TEM found out small diameter of nanotubes structure within 8 – 10 nm of pure and F doped TiO2 nanotubes. The band gap energy (Eg) of both nanotubes samples were almost similar proposing that F doping does not modify the band gap energy.


1998 ◽  
Vol 13 (8) ◽  
pp. 2218-2223 ◽  
Author(s):  
S. Ardizzone ◽  
C. L. Bianchi ◽  
B. Vercelli

The present paper reports data concerning magnesia samples obtained by calcination of different precursor salts at different increasing temperatures (873–1253 K). The oxides are characterized by x- ray diffraction, scanning electron microscopy, and N2 adsorption at subcritical temperatures. The samples appear to be composed, at any temperature, of pure periclase with a degree of crystallinity which increases with the temperature of calcination. Morphologically, the products have the shape either of lamellas or of cubes of variable dimensions, depending on the nature and route of preparation of the precursor salts. The variation of the specific surface area and the degree of porosity with the nature of the precursors and the temperature is discussed.


Clay Minerals ◽  
2008 ◽  
Vol 43 (4) ◽  
pp. 597-613 ◽  
Author(s):  
M. A. Sequeira Braga ◽  
C. Leal Gomes ◽  
J. Duplay ◽  
H. Paquet

AbstractNamacotche gem-bearing pegmatites of Alto Ligonha pegmatite district are heterogeneous, strongly fractionated, and have large Li and Ta and extremely large Cs contents. Clay samples were collected in fracture infillings and dilation cavities with gemstones and were studied using X-ray diffraction (XRD), polarized light microscope, scanning electron microscopy-energy dispersive spectroscopy, high-resolution transmission electron microscopy and chemical analyses. The <2 μm fraction contains cookeite, illite, illite-smectite and suggested irregular mixed-layer cookeite-smectite, beidellite, montmorillonite, kaolinite and goethite.The XRD patterns of chlorite and their d values suggest the presence of ‘di-trioctahedral chlorite’ similar to cookeite-Ia polytype. Cookeite chemical analyses show that Li contents range from 0.82 to 1.08 atoms per half unit cell.A close relationship has been established between occurrences of gemstones and clay minerals. Some important textures and crystal chemistry are discussed.The main gemstones related to the Namacotche Pegmatite are: morganite (pink cesian beryl), kunzite (spodumene) and elbaite tourmaline. As the mechanisms responsible for the gemstone formation take place at low temperature, the clay minerals paragenesis cookeite ± cookeite-smectite interstratification ± beidellite + montmorillonite ± illite-smectite interstratification, represents a late-stage secondary paragenesis, generated by hydrothermal alteration.


2021 ◽  
Vol 406 ◽  
pp. 256-264
Author(s):  
Mohammed Mahdi ◽  
M. Kadri

First, the metallic oxides of PbO, TiO2 and ZrO2 were mixed following (2, 1, 1) molar mass respectively. Then 4 samples were separated (S1, S2, S3 and S4). the first one S1 was subjected to calcination treatments at 600, 700 and 800 °C however, the S2 was treated at 700 °C only, the S3 at 800 °C and S4 at 850 °C. The X ray diffraction of the samples reveals important difference in the phases obtained, at 600 °C the quadratic riche phase of PbTiO3 was mainly observed on sample S1, after the treatment at 700 °C and 800°C, the same XRD patterns were obtained with the same peaks positions and the relative intensity. However the S2 revels different pattern from S1 at 700 °C relative to the formation of the Pb(Zr0.75, Ti0.25)O3 Rhombohedral riche phase. The S3 XRD results reveal also different pattern from S1 at 800 °C relative to the formation of Pb (Zr0.58, Ti0.42) O3 near the Morphotropic phase boundary (MPB) and the S4 confirm these finding. Thin films grown from the S1 and S4 used as target in the RF sputtering system, show important difference in the PZT stoichiometry obtained which is relative to Pb (Zr0.44, Ti0.56) located in the quadratic riche phase and Pb (Zr0.52, Ti0.48) O3 near the MPB respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Fei Long ◽  
Shuyi Mo ◽  
Yan Zeng ◽  
Shangsen Chi ◽  
Zhengguang Zou

Flower-like Cu2ZnSnS4(CZTS) nanoflakes were synthesized by a facile and fast one-pot solution reaction using copper(II) acetate monohydrate, zinc acetate dihydrate, tin(IV) chloride pentahydrate, and thiourea as starting materials. The as-synthesized samples were characterized by X-ray diffraction (XRD), Raman scattering analysis, field emission scanning electron microscopy (FESEM) equipped with an energy dispersion X-ray spectrometer (EDS), transmission electron microscopy (TEM), and UV-Vis absorption spectra. The XRD patterns shown that the as-synthesized particles were kesterite CZTS and Raman scattering analysis and EDS confirmed that kesterite CZTS was the only phase of product. The results of FESEM and TEM show that the as-synthesized particles were flower-like morphology with the average size of 1~2 μm which are composed of 50 nm thick nanoflakes. UV-Vis absorption spectrum revealed CZTS nanoflakes with a direct band gap of 1.52 eV.


2008 ◽  
Vol 23 (12) ◽  
pp. 3275-3280 ◽  
Author(s):  
K.H. Lee ◽  
J.Y. Lee ◽  
H.C. Jeon ◽  
T.W. Kang ◽  
H.Y. Kwon ◽  
...  

The (Ga1−xMnx)N nanorods were grown on Al2O3 (0001) substrates by using rf-associated molecular beam epitaxy. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected-area diffraction pattern (SADP) results showed that the (Ga1−xMnx)N nanorods had (0001) preferential orientations. XRD patterns showed that the (Ga1−xMnx)N nanorods contained a small number of grains with different preferred orientations. High-resolution TEM (HRTEM) images showed that the (Ga1−xMnx)N nanorods consisted of different preferentially oriented grains. The initial formation mechanisms for the (Ga1−xMnx)N nanorods grown on Al2O3 (0001) substrates are described on the basis of the XRD, the TEM, the SADP, and the HRTEM results.


Sign in / Sign up

Export Citation Format

Share Document