scholarly journals Reinvigorating Modern Breadmaking Based on Ancient Practices and Plant Ingredients, with Implementation of a Physicochemical Approach

Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 789
Author(s):  
Vasileia Sereti ◽  
Athina Lazaridou ◽  
Costas G. Biliaderis ◽  
Soultana Maria Valamoti

In this study, the potential use of ancient plant ingredients in emerging bakery products based on possible prehistoric and/or ancient practices of grinding and breadmaking was explored. Various ancient grains, nuts and seeds (einkorn wheat, barley, acorn, lentil, poppy seeds, linseed) were ground using prehistoric grinding tool replicas. Barley-based sourdough prepared by multiple back-slopping steps was added to dough made from einkorn alone or mixed with the above ingredients (20% level) or commercial flours alone (common wheat, spelt, barley). Sieving analysis showed that 40% of the einkorn flour particles were >400 μm, whereas commercial barley and common wheat flours were finer. Differential scanning calorimetry revealed that lentil flour exhibited higher melting peak temperature and lower apparent enthalpy of starch gelatinization. Among all bread formulations tested, barley dough exhibited the highest elastic modulus and complex viscosity, as determined by dynamic rheometry; einkorn breads fortified with linseed and barley had the softest and hardest crust, respectively, as indicated by texture analysis; and common wheat gave the highest loaf-specific volume. Barley sourdough inclusion into einkorn dough did not affect the extent of starch retrogradation in the baked product. Generally, incorporation of ancient plant ingredients into contemporary bread formulations seems to be feasible.

2018 ◽  
Vol 46 (2) ◽  
pp. 63-66
Author(s):  
Katalin Kóczán-Manninger ◽  
Katalin Badak-Kerti

Abstract Bread samples were made using flour mixes of Triticum monococcum (Tr. monococcum) and Triticum spelta (Tr. spelta). They were tested for their rheological behaviour over the first 3 days of storage at room temperature, and for their characteristics based on a Hungarian Standard. Parameters were set such as the volume of the baked product, baking loss, crumb characteristics and elasticity of crumbs. The behaviour of flour from einkorn wheat is different to that of Tr. spelta. The properties of the tested flour mixes measured by a farinograph show that Tr. spelta produces an acceptable dough, on the other hand, the dough of Tr. monococcum develops quickly but is very unstable so weakens within minutes of being kneaded. This also suggests that doughs composed of einkorn wheat flour require a different type of kneading than those of Tr. spelta (or Tr. aestivum, also referred to as common wheat) flours. Breads composed of Tr. spelta were comparable with those made with Tr. aestivum, the crumb elasticity was above 90 % on the day of baking, which indicates high quality. The Tr. monococcum breads, however, were of low grade: the volume of the breads decreased by increasing the ratio of Tr. monococcum to Tr. spelta and the elasticity reduced to unacceptable levels (less than 60 %). It should be mentioned that the grading was based on breads made purely from Tr. aestivum flours.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4433 ◽  
Author(s):  
Carolina Caicedo ◽  
Rocío Yaneli Aguirre Loredo ◽  
Abril Fonseca García ◽  
Omar Hernán Ossa ◽  
Aldo Vázquez Arce ◽  
...  

The modification of achira starch a thermoplastic biopolymer is shown. Glycerol and sorbitol, common plasticizers, were used in the molten state with organic acids such as oleic acid and lactic acid obtaining thermodynamically more stable products. The proportion of starch:plasticizer was 70:30, and the acid agent was added in portions from 3%, 6%, and 9% by weight. These mixtures were obtained in a torque rheometer for 10 min at 130 °C. The lactic acid managed to efficiently promote the gelatinization process by increasing the available polar sites towards the surface of the material; as a result, there were lower values in the contact angle, these results were corroborated with the analysis performed by differential scanning calorimetry and X-ray diffraction. The results derived from oscillatory rheological analysis had a viscous behavior in the thermoplastic starch samples and with the presence of acids; this behavior favors the transitions from viscous to elastic. The mixture of sorbitol or glycerol with lactic acid promoted lower values of the loss module, the storage module, and the complex viscosity, which means lower residual energy in the transition of the viscous state to the elastic state; this allows the compounds to be scaled to conventional polymer transformation processes.


Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 124 ◽  
Author(s):  
Ángel Alvaredo ◽  
María Martín ◽  
Pere Castell ◽  
Roberto Guzmán de Villoria ◽  
Juan Fernández-Blázquez

The effect of the graphene nanoplateletets (GNP), at concentration of 1, 5 and 10 wt %, in Poly ether ether ketone (PEEK) composite crystallization from melt and during cold crystallization were investigated by differential scanning calorimetry (DSC) and real time X-ray diffraction experiments. DSC results revealed a double effect of GNP: (a) nucleating effect crystallization from melt started at higher temperatures and (b) longer global crystallization time due to the restriction in the polymer chain mobility. This hindered mobility were proved by rheological behavior of nanocomposites, because to the increase of complex viscosity, G′, G″ with the GNP content, as well as the non-Newtonian behavior found in composites with high GNP content. Finally, real time wide and small angle synchrotron X-ray radiation (WAXS/SAXS) X-ray measurements showed that GNP has not affected the orthorhombic phase of PEEK nor the evolution of the crystal phase during the crystallization processes. However, the correlation length of the crystal obtained by WAXS and the long period (L) by SAXS varied depending on the GNP content.


2019 ◽  
Vol 39 (2) ◽  
pp. 117-123 ◽  
Author(s):  
Yubi Ji ◽  
Heng Luo ◽  
Min Shi ◽  
Zhao Yang ◽  
Wei Gong ◽  
...  

AbstractPoly(vinyl chloride) (PVC) plastisols are widely used in the production of flexible PVC foams. In this study, we investigated the evolution of the complex viscosity of PVC plastisol by dynamic oscillatory tests, the storage modulus of the PVC compound by dynamic mechanical analysis, and the thermal behavior including the decomposition of three chemical blowing agents (CBAs), namely, azodicarbonamide, 4,4′-oxybis(benzenesulfonyl hydrazide), and sodium bicarbonate, by differential scanning calorimetry. Furthermore, the morphology and quality of the foams obtained from the corresponding plastisols were characterized by scanning electron microscopy. The results indicated that the onset decomposition temperature T2(5%) of a CBA in plastisol is the most critical indicator of the foam quality. The temperature difference corresponding to [T2(5%) – Tηmax] was also proved to be another important parameter. When T2(5%) is within the optimum temperature range of a PVC plastisol, the bigger the [T2(5%) – Tηmax] difference, the better the quality of the foams.


2013 ◽  
Vol 33 (2) ◽  
pp. 111-119
Author(s):  
Yiming Liu ◽  
Qing Liu ◽  
Bing Meng ◽  
Zhihua Wu

Abstract Polycaprolactone (PCL)-coated micro kaolin and nano-titania were prepared by high-speed hybrid mechanical coating. Poly(butylene succinate) (PBS)-coated inorganic particle composites were prepared by the melt-blending process. The influence of coated kaolin microparticles on the dynamic rheological behavior, non-isothermal crystallization behavior, micromorphology, and mechanical behavior were investigated. The effect of coated nano-titania on the mechanical properties of PBS-coated kaolin composites was also studied. A dynamic rheological property indicates that the complex viscosity of PBS-coated kaolin microcomposites is higher than neat PBS. Differential scanning calorimetry (DSC) implies that the micrometric size of kaolin particles restrains the crystallization of PBS. Scanning electronic microscopy (SEM) reveals a well dispersed state of coated kaolin in the polymer matrix. The impact strength of PBS-coated kaolin microcomposites is improved, while the tensile strength and elongation at break is decreased, but still appreciable. The introduction of coated nano-titania improves the impact strength dramatically, and the elongation at break of composites is considerable.


2018 ◽  
Vol 31 (7) ◽  
pp. 820-830 ◽  
Author(s):  
Haifeng Wang ◽  
Zhenjiang Zhang ◽  
Puguang Ji ◽  
Xiaoyan Yu ◽  
Kimiyoshi Naito ◽  
...  

A novel vinylpyridine-based phthalonitrile monomer, 2,6-bis[3-(3,4-dicyanophenoxy)styryl]pyridine (BDSP), was resoundingly produced by a nucleophilic substitution reaction of 2,6-bis(3-hydroxystyryl)pyridine with 4-nitrophthalonitrile in the presence of potassium carbonate. The chemical structure of the synthesized BDSP was confirmed by proton (1H) and carbon (12C) nuclear magnetic resonance (NMR) as well as Fourier transform infrared (FTIR) analysis. The curing behavior of BDSP was investigated by FTIR and differential scanning calorimetry (DSC) analyses. The resin showed a low complex viscosity in the wide processing window between the monomer melting temperature and the curing temperature of the polymer, as discovered by rheological analysis. In addition, the properties of the polymer were studied by thermal gravimetric analysis (TGA) and dynamic mechanical analysis (DMA). Based on the test results, the BDSP polymer demonstrated superior processing performance, excellent thermal stability, outstanding mechanical properties, and low water uptake, and these advanced performance characteristics are critical to many fields.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2111
Author(s):  
Jaime Gálvez ◽  
Juan Correa Aguirre ◽  
Miguel Hidalgo Salazar ◽  
Bairo Vera Mondragón ◽  
Elizabeth Wagner ◽  
...  

One of the critical processing parameters—the speed of the extrusion process for plasticized poly (lactic acid) (PLA)—was investigated in the presence of acetyl tributyl citrate (ATBC) as plasticizer. The mixtures were obtained by varying the content of plasticizer (ATBC, 10–30% by weight), using a twin screw extruder as a processing medium for which a temperature profile with peak was established that ended at 160 °C, two mixing zones and different screw rotation speeds (60 and 150 rpm). To evaluate the thermo-mechanical properties of the blend and hydrophilicity, the miscibility of the plasticizing and PLA matrix, Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), oscillatory rheological analysis, Dynamic Mechanical Analysis (DMA), mechanical analysis, as well as the contact angle were tested. The results derived from the oscillatory rheological analysis had a viscous behavior in the PLA samples with the presence of ATBC; the lower process speed promotes the transitions from viscous to elastic as well as higher values of loss modulus, storage modulus and complex viscosity, which means less loss of molecular weight and lower residual energy in the transition from the viscous state to the elastic state. The mechanical and thermal performance was optimized considering a greater capacity in the energy absorption and integration of the components.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4092
Author(s):  
Joanna Mastalska-Popławska ◽  
Agata Stempkowska ◽  
Iwona Habina-Skrzyniarz ◽  
Artur T. Krzyżak ◽  
Paweł Rutkowski ◽  
...  

Hybrid polyacrylate-silicate hydrogels were obtained in the presence of N,N′-methylenebisacrylamide (NNMBA) as the cross-linking monomer and sodium thiosulphate/potassium persulphate (NTS/KPS) as the redox initiators. The results of the tests allowed us to conclude that a hybrid structure with a polyacrylate scaffolding and a silicate matrix had been obtained. The results of the rheological analysis revealed that the hydrogel sample with a 1:7 mass ratio of sodium water glass to the sodium polyacrylate is characterized by the highest complex viscosity. Thermal analysis (Thermogravimetry/Differential Scanning Calorimetry (TG/DSC)) showed that water begins to evaporate at higher temperatures, from 120 °C to even 180 °C. These results were confirmed by mid-infrared spectroscopy (MIR) and nuclear magnetic resonance spectroscopy (NMR) analysis. Differences in the intensity of the peaks derived from water in the MIR spectra indicate that most of the water is bounded. In turn, NMR results showed that the mobility of water molecules decreases as the amount of sodium water glass in the mixture increases.


Author(s):  
Wioletta Biel ◽  
Anna Jaroszewska ◽  
Sławomir Stankowski ◽  
Magdalena Sobolewska ◽  
Jagoda Kępińska-Pacelik

AbstractThe chemical composition of 4 spring wheat species was analyzed: einkorn (Triticum monococcum) (local cv.), emmer (Triticum dicoccon) (Lamella cv.), spelt (Triticum spelta) (Wirtas cv.), and common wheat (Triticum aestivum) (Rospuda cv.). Mean emmer and einkorn yield was significantly lower than that of common wheat. The analyses of the wheat grain included the content of total protein, crude ash, crude fat, crude fibre, carbohydrates, phosphorus, potassium, magnesium, calcium, copper, iron, manganese, and zinc. The grains of the tested ancient wheats were richer in protein, lipids, crude fibre, and crude ash than the common wheat grains. The significantly highest levels of crude protein, ether extract, and crude ash were found in einkorn. As the protein concentration in the grain increased, the calcium, magnesium, and potassium levels increased, and the zinc and manganese levels decreased. Genotypic differences between the studied wheats were reflected in the concentrations of the minerals and nutrients, an observation which can be useful in further cross-linkage studies. Dough made from common wheat and spelt flour showed better performance quality classifying it to be used for bread production. In turn, flour from emmer and einkorn wheat may be intended for pastry products, due to short dough development time and constancy as well as high softening.


2019 ◽  
Vol 31 (9-10) ◽  
pp. 1075-1084 ◽  
Author(s):  
Yao Liu ◽  
Puguang Ji ◽  
Zhenjiang Zhang ◽  
Xiaoyan Yu ◽  
Kimiyoshi Naito ◽  
...  

The pyrazine-based oligomeric phthalonitrile (PN) monomer, 2,6-bis[3-(3,4-dicyanophenoxy)phenoxy]pyrazine (BCPP), was synthesized from the reaction of an excess amount of resorcinol with 2,6-dichloropyrazine in the presence of potassium carbonate, followed by end-capping with 4-nitrophthalonitrile in a two-step, one-pot reaction. 4-(Aminophenoxy)phthalonitrile was applied to promote the curing reaction. The curing behavior was investigated by differential scanning calorimetry and rheological behavior, showing a wide processing window of 94°C, a complex viscosity of less than 1.5 Pa·s and a lower reaction activation energy of 32.57 kJ mol−1. The structure of the BCPP monomer was confirmed by Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. The unit cell was determined to be tetragonal system by wide-angle X-ray diffraction. The monomer was cured to yield cross-linked polymers, which exhibited a high initial storage modulus, excellent glass transition temperature, outstanding thermal stability, and low water uptake.


Sign in / Sign up

Export Citation Format

Share Document