scholarly journals Green Pea (Pisum sativum L.) Hull Polyphenol Extracts Ameliorate DSS-Induced Colitis through Keap1/Nrf2 Pathway and Gut Microbiota Modulation

Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2765
Author(s):  
Fanghua Guo ◽  
Rong Tsao ◽  
Chuyao Li ◽  
Xiaoya Wang ◽  
Hua Zhang ◽  
...  

As a processing by-product, green pea hull (GPH) was found to be rich in phenolic components in our previous studies. In this study, UHPLC-LTQ-OrbiTrap-MS (Ultra performance liquid chromatography-linear ion trap orbitrap tandem mass spectrometry) technique was used to quantify polyphenols, and DSS (sodium dextran sulfate)-induced colitis mouse model was established to explore the effect of GPH extracts on colitis. The results showed that quercetin and its derivatives, kaempferol trihexanside and catechin and its derivatives were the main phenolic substances in the extract, reaching 2836.57, 1482.00 and 1339.91 µg quercetin/g GPH extract, respectively; GPH extracts can improved inflammatory status, repaired colonic function, regulated inflammatory factors, and restored oxidative balance in mice. Further, GPH extracts can activate Keap1-Nrf2-ARE signaling pathway, regulate downstream antioxidant protease and gut microbiota by increasing F/B value and promoting the growth of Lactobacillaceae and Lachnospiraceae, and improve the level of SCFAs (short-chain fatty acids) to relieve DSS-induced colitis in mice. Therefore, GPH may be a promising dietary resource for the treatment of ulcerative colitis.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Stefano Romano ◽  
George M. Savva ◽  
Janis R. Bedarf ◽  
Ian G. Charles ◽  
Falk Hildebrand ◽  
...  

AbstractThe gut microbiota is emerging as an important modulator of neurodegenerative diseases, and accumulating evidence has linked gut microbes to Parkinson’s disease (PD) symptomatology and pathophysiology. PD is often preceded by gastrointestinal symptoms and alterations of the enteric nervous system accompany the disease. Several studies have analyzed the gut microbiome in PD, but a consensus on the features of the PD-specific microbiota is missing. Here, we conduct a meta-analysis re-analyzing the ten currently available 16S microbiome datasets to investigate whether common alterations in the gut microbiota of PD patients exist across cohorts. We found significant alterations in the PD-associated microbiome, which are robust to study-specific technical heterogeneities, although differences in microbiome structure between PD and controls are small. Enrichment of the genera Lactobacillus, Akkermansia, and Bifidobacterium and depletion of bacteria belonging to the Lachnospiraceae family and the Faecalibacterium genus, both important short-chain fatty acids producers, emerged as the most consistent PD gut microbiome alterations. This dysbiosis might result in a pro-inflammatory status which could be linked to the recurrent gastrointestinal symptoms affecting PD patients.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3719
Author(s):  
Daniela Maria Tanase ◽  
Evelina Maria Gosav ◽  
Ecaterina Neculae ◽  
Claudia Florida Costea ◽  
Manuela Ciocoiu ◽  
...  

Type 2 diabetes mellitus (T2DM) remains one of the most problematic and economic consumer disorders worldwide, with growing prevalence and incidence. Over the last years, substantial research has highlighted the intricate relationship among gut microbiota, dysbiosis and metabolic syndromes development. Changes in the gut microbiome composition lead to an imbalanced gastrointestinal habitat which promotes abnormal production of metabolites, inflammatory status, glucose metabolism alteration and even insulin resistance (IR). Short-chain fatty acids (SCFAs), trimethylamine N-oxide (TMAO), lipopolysaccharide, aromatic amino acids and their affiliated metabolites, contribute to T2DM via different metabolic and immunologic pathways. In this narrative review, we discuss the immunopathogenic mechanism behind gut dysbiosis, T2DM development and the major known diabetic microvascular complications (retinopathy, neuropathy and nephropathy), the beneficial use of pre- and pro-biotics and fecal microbiota transplantation in T2DM management and new findings and future perspectives in this field.


2015 ◽  
Vol 6 (1) ◽  
pp. 97-111 ◽  
Author(s):  
U. Etxeberria ◽  
N. Arias ◽  
N. Boqué ◽  
M.T. Macarulla ◽  
M.P. Portillo ◽  
...  

The gastrointestinal tract harbours a ‘superorganism’ called the gut microbiota, which is known to play a crucial role in the onset and development of diverse diseases. This internal ecosystem, far from being a static environment, can be manipulated by diet and dietary components. Feeding animals with high-fat sucrose (HFS) diets entails diet-induced obesity, a model which is usually used in research to mimic the obese phenotype of Western societies. The aim of the present study was to identify gut microbiota dysbiosis and associated metabolic changes produced in male Wistar rats fed a HFS diet for 6 weeks and compare it with the basal microbial composition. For this purpose, DNA extracted from faeces at baseline and after treatment was analysed by amplification of the V4-V6 region of the 16S ribosomal DNA (rDNA) gene using 454 pyrosequencing. Short-chain fatty acids, i.e. acetate, propionate and butyrate, were also evaluated by gas chromatography-mass spectrometry. At the end of the treatment, gut microbiota composition significantly differed at phylum level (Firmicutes, Bacteroidetes and Proteobacteria) and class level (Erisypelotrichi, Deltaproteobacteria, Bacteroidia and Bacilli). Interestingly, the class Clostridia showed a significant decrease after HFS diet treatment, which correlated with visceral adipose tissue, and is likely mediated by dietary carbohydrates. Of particular interest, Clostridium cluster XIVa species were significantly reduced and changes were identified in the relative abundance of other specific bacterial species (Mitsuokella jalaludinii, Eubacterium ventriosum, Clostridium sp. FCB90-3, Prevotella nanceiensis, Clostridium fusiformis, Clostridium sp. BNL1100 and Eubacterium cylindroides) that, in some cases, showed opposite trends to their relative families. These results highlight the relevance of characterising gut microbial population differences at species level and contribute to understand the plausible link between diet and specific gut bacterial species that are able to influence the inflammatory status, intestinal barrier function and obesity development.


2021 ◽  
Author(s):  
Ciyan Chen ◽  
Min Niu ◽  
Junxi Pan ◽  
Na Du ◽  
Shumin Liu ◽  
...  

Abstract Background: Colorectal adenomatous polyps (CAPs) are considered precancerous lesions of colorectal cancer (CRC). The gut microbiota participates in the process of digestion and, in the process, produces metabolites, mainly short-chain fatty acids (SCFAs), secondary bile acids and conjugated linoleic acid (CLA). This study aimed to investigate the gut microbiota constituents and metabolites in the faeces of CAP patients to identify microbiota or metabolites that can be used as sensitive biological predictors and to provide a theoretical basis for the clinical treatment of CAPs.Methods: 16S rRNA sequence analysis was used to detect microbial changes in the faeces of CAP patients. qPCR analysis was used to evaluate the ability of the microbiota to produce metabolites, and the contents of metabolites in faeces were detected by ion chromatography and ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS).Results: Based on the detection of the gut microbiota, patients with CAPs had increased abundances of Bacteroides and Citrobacter, and the abundances of Weissella and Lactobacillus were decreased. We also explored gene expression, and the abundance of butyrate-producing bacterial genes was significantly increased in the faeces of CAP patients, but those of secondary bile acid-producing and CLA-producing bacterial genes showed no differences in faecal samples. The acetic acid and butyric acid contents were increased in the faeces of the CAP group, and the healthy control group had higher t10,c12-CLA contents. Conclusion: The gut microbiota analysis results, assessed in faeces, showed that Bacteroides and Citrobacter were positively correlated with CAPs, which indicated that changes in specific genera might be detrimental to intestinal health. In addition, t10,c12-CLA played an important role in protecting the intestine.


Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2483 ◽  
Author(s):  
Izaskun García-Mantrana ◽  
Marta Calatayud ◽  
María Romo-Vaquero ◽  
Juan Carlos Espín ◽  
María V. Selma ◽  
...  

Walnuts are rich in polyphenols ellagitannins, modulate gut microbiota (GM), and exert health benefits after long-term consumption. The metabolism of ellagitannins to urolithins via GM depends on urolithin metabotypes (UM-A, -B, or -0), which have been reported to predict host responsiveness to a polyphenol-rich intervention. This study aims to assess whether UMs were associated with differential GM modulation after short-term walnut consumption. In this study, 27 healthy individuals consumed 33 g of peeled raw walnuts over three days. GM profiling was determined using 16S rRNA illumina sequencing and specific real-time quantitative polymerase chain reactions (qPCRs), as well as microbial activity using short-chain fatty acids analysis in stool samples. UMs stratification of volunteers was assessed using ultra performance liquid chromatography–electro spray ionization–quadrupole time of flight–mass spectrometry (UPLC-ESI-QTOF-MS) analysis of urolithins in urine samples. The gut microbiota associated with UM-B was more sensitive to the walnut intervention. Blautia, Bifidobacterium, and members of the Coriobacteriaceae family, including Gordonibacter, increased exclusively in UM-B subjects, while some members of the Lachnospiraceae family decreased in UM-A individuals. Coprococcus and Collinsella increased in both UMs and higher acetate and propionate production resulted after walnuts intake. Our results show that walnuts consumption after only three days modulates GM in a urolithin metabotype-depending manner and increases the production of short-chain fatty acids (SCFA).


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Bruno Melo Carvalho ◽  
Mario Jose Abdalla Saad

Obesity is the main condition that is correlated with the appearance of insulin resistance, which is the major link among its comorbidities, such as type 2 diabetes, nonalcoholic fatty liver disease, cardiovascular and neurodegenerative diseases, and several types of cancer. Obesity affects a large number of individuals worldwide; it degrades human health and quality of life. Here, we review the role of the gut microbiota in the pathophysiology of obesity and type 2 diabetes, which is promoted by a bacterial diversity shift mediated by overnutrition. Whole bacteria, their products, and metabolites undergo increased translocation through the gut epithelium to the circulation due to degraded tight junctions and the consequent increase in intestinal permeability that culminates in inflammation and insulin resistance. Several strategies focusing on modulation of the gut microbiota (antibiotics, probiotics, and prebiotics) are being experimentally employed in metabolic derangement in order to reduce intestinal permeability, increase the production of short chain fatty acids and anorectic gut hormones, and promote insulin sensitivity to counteract the inflammatory status and insulin resistance found in obese individuals.


Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Ciyan Chen ◽  
Min Niu ◽  
Junxi Pan ◽  
Na Du ◽  
Shumin Liu ◽  
...  

Abstract Background Colorectal adenomatous polyps (CAPs) are considered precancerous lesions of colorectal cancer (CRC). The gut microbiota participates in the process of digestion and, in the process, produces metabolites, mainly short-chain fatty acids (SCFAs), secondary bile acids and conjugated linoleic acid (CLA). This study aimed to investigate the gut microbiota constituents and metabolites in the faeces of CAP patients to identify microbiota or metabolites that can be used as sensitive biological predictors and to provide a theoretical basis for the clinical treatment of CAPs. Methods 16S rRNA sequence analysis was used to detect microbial changes in the faeces of CAP patients. qPCR analysis was used to evaluate the ability of the microbiota to produce metabolites, and the contents of metabolites in faeces were detected by ion chromatography and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Results Based on the detection of the gut microbiota, patients with CAPs had increased abundances of Bacteroides and Citrobacter, and the abundances of Weissella and Lactobacillus were decreased. We also explored gene expression, and the abundance of butyrate-producing bacterial genes was significantly increased in the faeces of CAP patients, but those of secondary bile acid-producing and CLA-producing bacterial genes showed no differences in faecal samples. The acetic acid and butyric acid contents were increased in the faeces of the CAP group, and the healthy control group had higher t10,c12-CLA contents. Conclusion The gut microbiota analysis results, assessed in faeces, showed that Bacteroides and Citrobacter were positively correlated with CAPs, which indicated that changes in specific genera might be detrimental to intestinal health. In addition, t10,c12-CLA played an important role in protecting the intestine.


2020 ◽  
Author(s):  
Stefano Romano ◽  
George M Savva ◽  
Janis R Bedarf ◽  
Ian G Charles ◽  
Falk Hildebrand ◽  
...  

The gut microbiota is emerging as an important modulator of neurodegenerative diseases, and accumulating evidence has linked gut microbes to Parkinson's disease (PD) symptomatology and pathophysiology. PD is often preceded by gastrointestinal symptoms and alterations of the enteric nervous system accompany the disease. Several studies have analyzed the gut microbiome in PD, but a consensus on the features of the PD-specific microbiota is missing. Here, we conduct a meta-analysis re-analyzing 10 currently available 16S microbiome datasets to investigate whether underlying alterations in the gut microbiota of PD patients exist. We found consistent alterations in PD-associated microbiome, which are significant and robust to confounders across studies, although differences in microbiome structure between PD and controls are limited. Enrichment of the genera Lactobacillus, Akkermansia, and Bifidobacterium and depletion of bacteria belonging to the families Lachnospiraceae and Ruminococcaceae, which are important short-chain fatty acids producers, emerged as the most consistent PD gut microbiome alterations. This dysbiosis might result in a pro-inflammatory status which could explain the recurrent gastrointestinal symptoms affecting PD patients.


2021 ◽  
pp. 1-7
Author(s):  
Halle J. Kincaid ◽  
Ravinder Nagpal ◽  
Hariom Yadav

<b><i>Background:</i></b> Alzheimer’s disease (AD) is the most common form of dementia, particularly in older adults, with clinical manifestations of progressive cognitive decline and functional impairment. The prevalence of AD and related dementia is mounting worldwide, but its etiology remains unresolved, with no available preventative or ameliorative therapy. Emerging evidence suggests that the gut microbiota of patients with AD is different from cognitively normal counterparts. <b><i>Summary:</i></b> Communication between gut and brain (gut-brain axis) plays a crucial role in AD pathology. Bacteria inhabiting the gut strongly influence this gut-brain axis and thus may participate in AD pathology. Diet, one of the strongest modulators of gut microbiota, also strongly influences brain health and AD pathology. Gut microbiota metabolites including short-chain fatty acids, pro-inflammatory factors, and neurotransmitters may also affect AD pathogenesis and associated cognitive decline. Therefore, investigation of diet-microbiota-brain axis is important to better understand its contribution in AD pathology and its potential use as a target to prevent and treat AD. Herein, we discuss the link between AD and gut microbiota and ponder how microbiota modulation through nutritional approaches may offer avenues for discovering novel preventive and therapeutic strategies against AD. <b><i>Key Message:</i></b> A strong association exists between lifestyle factors and AD prevalence wherein unhealthy dietary factors have been linked to neurodegeneration. Specific prudent dietary patterns might help in preventing or delaying AD progression by affecting β-amyloid production and tau processing and regulating AD-associated inflammation, metabolism and oxidative stress, plausibly via modulating gut microbiota.


2022 ◽  
Author(s):  
Huiyan Ma ◽  
Libo Yang ◽  
Ning Yan ◽  
Hua Zhang ◽  
Xiaoxia Zhang ◽  
...  

Abstract Background: Acute coronary syndromes (ACS) is closely associated with chronic low-grade inflammation and gut microbiome composition. However, the composition and functional capacity of the gut microbiome in relation to ACS have not been systematically examined. Results: we perform a metagenome-wide association study on stools and plasma from 66 individuals with ACS and 46 healthy controls (HC). We then compared gut microbial composition using 16S ribosomal RNA gene sequencing in fecal samples to detect species with differential abundance between 2 groups. We reported that the altered composition of gut microbiota was associated with ACS and exacerbated inflammatory status. Moreover, parameters in ACS including body weights (BWs), low-density lipoprotein (LDL), triglyceride (TG), total cholesterol (TC), C-reactive protein (CRP) and high homocysteine (HCY) were elevated; whereas high-density lipoprotein (HDL) was decreased. pro-inflammatory interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor (TNF)-α, monocyte chemoattractant protein-1(MCP-1) and lipopolysaccaride (LPS) in ACS were increased respectively. The results of 16S rRNA sequencing and analysis displayed that the overall community of gut microbiota in ACS was notably changed mainly through increasing the abundance of Bacteroidetes, Verrucomicrobia, Proteobacteria Parabacteroide, Unidentified_Enterobacteriaceae, Subdoligranulum, Akkermansia, Alistipes, Streptococcus, Paraprevotella as well as decreasing Subdoligranulum, Roseburia, Faecalibacterium, Blautia, Agathobacter, Anaerostipes, Bifidobacterium. Further analysis showed that there was a significant correlation between the above differences in gut microbiota and inflammatory factors. Conclusions: Our data represent a comprehensive resource for further investigations on the role of the gut microbiome in promoting or preventing ACS.


Sign in / Sign up

Export Citation Format

Share Document