scholarly journals Valorization of Rose Hip (Rosa canina) Puree Co-Product in Enriched Corn Extrudates

Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2787
Author(s):  
Marta Igual ◽  
Maria Simona Chiş ◽  
Adriana Păucean ◽  
Dan Cristian Vodnar ◽  
Sevastița Muste ◽  
...  

Serious issues and challenges of the world’s population are represented by dwindling natural food resources and the scale-up of sustainable food manufacturing. Therefore, the valorization of co-products from the food industry represents new methods for food development. The principal goal of the study was to capitalize rose hip (Rosa canina) co-product powder in extrudates, highlighting its influence on extrusion parameters, physicochemical, and nutritional characteristics. The water absorption index, swelling index, and hygroscopicity increased with the rose hip co-product addition. Furthermore, water solubility index, expansion index, porosity, image parameters (area and perimeter) of the extrudates decreased. Lycopene, β-Carotene, Zea-esters, and lutein were the main carotenoids identified in the extrudates; whereas Catechin, Di-gallic acid, Procyanidin dimmer 1, Procyanidin dimmer 2, and Isorhamnetin-glucuronide were the main flavonoids. Strong Pearson correlations were identified between carotenoids, total flavonoids, vitamin C, total folate, and antioxidant activity. Valorization of the Rosa canina powder co-product led to value-added products—corn extrudates—rich in bioactive compounds.

2020 ◽  
Vol 7 (04) ◽  
Author(s):  
SATYA NARAYAN SINGH ◽  
RAJESH G BURBADE ◽  
HITESH SANCHAVAT ◽  
P S PANDIT

The cereals of today are more nutritious and healthful than ever before. Cereals processing is one of the oldest and the most essential part of all food technologies. Pasta products and noodles have been staple foods since ancient times in many countries all over the world. In this study pasta formulation was substituted with blending sapota powder in different proportions (4 levels i.e. 0%, 10%, 20%, 30%) into semolina and maida flour separately. Pasta products were prepared using eight different formulations and adding water (approximately 31% of total weight) in DOLLY pasta extruder machine. All the samples were evaluated for physical properties: specific length (mm/g), bulk density (kg/m3), specific density (kg/m3) and porosity (%); functional properties: water absorption index (%), water solubility index (%) and oil absorption capacity (ml/g) and nutritional compositions: moisture (%), crude protein (%), fat (%) and carbohydrate (%). Highest specific length 36.20 mm/g was observed for T5 treatment, low bulk density 368.10 kg/m3 was observed for T5 and highest porosity 9.24% was found for T1 treatment. The maximum WAI, WSI values 325.83%, 17.33% respectively was observed for T1 treatment and minimum value of oil absorption capacity 1.06 ml/g for T8 treatment. The moisture content of dried pasta products was found in the range of 6 to 7%. The maximum value of crude protein 13.07% was found for T5 and minimum value 8.81% for T4 treatments. The fat contents were varied from 1.02% to 1.28 %. The maximum value of carbohydrate was 76.20% for T1 and minimum value 65.41% for T8.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 278
Author(s):  
Katharina Herkendell

Bioelectrochemical systems (BES) employ enzymes, subcellular structures or whole electroactive microorganisms as biocatalysts for energy conversion purposes, such as the electrosynthesis of value-added chemicals and power generation in biofuel cells. From a bioelectrode engineering viewpoint, customizable nanostructured carbonaceous matrices have recently received considerable scientific attention as promising electrode supports due to their unique properties attractive to bioelectronics devices. This review demonstrates the latest advances in the application of nano- and micro-structured carbon electrode assemblies in BES. Specifically, in view of the gradual increase in the commercial applicability of these systems, we aim to address the stability and scalability of different BES designs and to highlight their potential roles in a circular bioeconomy.


2021 ◽  
Vol 7 (7) ◽  
pp. 541
Author(s):  
Lúcia P. S. Pimenta ◽  
Dhionne C. Gomes ◽  
Patrícia G. Cardoso ◽  
Jacqueline A. Takahashi

Filamentous fungi are known to biosynthesize an extraordinary range of azaphilones pigments with structural diversity and advantages over vegetal-derived colored natural products such agile and simple cultivation in the lab, acceptance of low-cost substrates, speed yield improvement, and ease of downstream processing. Modern genetic engineering allows industrial production, providing pigments with higher thermostability, water-solubility, and promising bioactivities combined with ecological functions. This review, covering the literature from 2020 onwards, focuses on the state-of-the-art of azaphilone dyes, the global market scenario, new compounds isolated in the period with respective biological activities, and biosynthetic pathways. Furthermore, we discussed the innovations of azaphilone cultivation and extraction techniques, as well as in yield improvement and scale-up. Potential applications in the food, cosmetic, pharmaceutical, and textile industries were also explored.


Chemistry ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 1271-1285
Author(s):  
Patricia Zimet ◽  
Ruby Valadez ◽  
Sofía Raffaelli ◽  
María Belén Estevez ◽  
Helena Pardo ◽  
...  

Microbial technology offers a green alternative for the synthesis of value-added nanomaterials. In particular, fungal compounds can improve silver nanoparticle production, stabilizing colloidal nanoparticles. Based on a previous study by our group, silver nanoparticles obtained using the extracellular cell-free extracts of Phanerochaete chrysosporium (PchNPs) have shown antimicrobial and antibiofilm activity against Gram-negative bacteria. Moreover, nisin—a bacteriocin widely used as a natural food preservative—has recently gained much attention due its antimicrobial action against Gram-positive bacteria in biomedical applications. Therefore, the aim of this work was to conjugate biogenic silver nanoparticles (PchNPs) with nisin to obtain nanoconjugates (PchNPs@nis) with enhanced antimicrobial properties. Characterization assays were conducted to determine physicochemical properties of PchNPs@nis, and also their antibacterial and antibiofilm activities were studied. The formation of PchNPs@nis was confirmed by UV-Vis, TEM, and Raman spectroscopy analysis. Different PchNPs@nis nanobioconjugates showed diameter values in the range of 60–130 nm by DLS and surface charge values between −20 and −13 mV. Nisin showed an excellent affinity to PchNPs, with binding efficiencies higher than 75%. Stable synthesized PchNPs@nis nanobioconjugates were not only able to inhibit biofilm formation by S. aureus, but also showed inhibition of the planktonic cell growth of Staphyloccocus aureus and Escherichia coli, broadening the spectrum of action of the unconjugated antimicrobials against Gram-positive and Gram-negative bacteria. In conclusion, these results show the promising application of PchNPs@nis, prepared via green technology, as potential antimicrobial nanomaterials.


2009 ◽  
Vol 27 (No. 3) ◽  
pp. 178-184 ◽  
Author(s):  
S. Kazaz ◽  
H. Baydar ◽  
S. Erbas

In this study, fruits, fruit flesh and seeds of damask rose (Rosa damascena Mill.) and rose hip (Rosa canina L.) were assayed for the composition of fatty acids, ascorbic acid, α-tocopherol, β-carotene, and mineral elements. The content of linoleic acid in seed oil of Rosa damascena (54.18%) was found to be higher than in that of Rosa canina (48.84%). α-Tocopherol contents were found to be 7.10 μg/g and 34.20 μg/g for Rosa damascena and Rosa canina fruits, respectively. Ascorbic acid content was determined as the highest in the fruit flesh (546 mg/100 g in Rosa damascena and 2200 mg/100 g in Rosa canina), and as the lowest in the seeds of both species. Rosa damascena fruits were found to be richer in minerals such as Ca, Fe, K, Mn, Na, P, and Zn than Rosa canina fruits. The results of the present study showed that Rosa damascena fruits could be used as food and food additive equally as rose hip fruits.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3854 ◽  
Author(s):  
Fidelis ◽  
Moura ◽  
Kabbas Junior ◽  
Pap ◽  
Mattila ◽  
...  

The circular economy is an umbrella concept that applies different mechanisms aiming to minimize waste generation, thus decoupling economic growth from natural resources. Each year, an estimated one-third of all food produced is wasted; this is equivalent to 1.3 billion tons of food, which is worth around US$1 trillion or even $2.6 trillion when social and economic costs are included. In the fruit and vegetable sector, 45% of the total produced amount is lost in the production (post-harvest, processing, and distribution) and consumption chains. Therefore, it is necessary to find new technological and environmentally friendly solutions to utilize fruit wastes as new raw materials to develop and scale up the production of high value-added products and ingredients. Considering that the production and consumption of fruits has increased in the last years and following the need to find the sustainable use of different fruit side streams, this work aimed to describe the chemical composition and bioactivity of different fruit seeds consumed worldwide. A comprehensive focus is given on the extraction techniques of water-soluble and lipophilic compounds and in vitro/in vivo functionalities, and the link between chemical composition and observed activity is holistically explained.


2019 ◽  
Vol 11 (15) ◽  
pp. 4137 ◽  
Author(s):  
Maria Ehrnström-Fuentes ◽  
Hanna Leipämaa-Leskinen

Self-organization is a term that is increasingly used to describe how engaged citizens come together to create sustainable food systems at the local community level. Yet, there is a lack of understanding of what this self-organizing activity actually means. While previous literature has addressed self-organization as an outcome of building consensus and a collective intentionality shared by the members of a group, we focus on the complex social processes involved when people with a diverse set of interests and motivations interact in the food network. In this study, we analyze what kinds of boundary negotiations emerge when grassroots-led food networks scale up. Our embedded single case study focuses on a REKO (‘REjäl KOnsumtion’, meaning ‘fair consumption’ in English) network in Finland comprising distributed local food groups and three types of actors: consumers, producers, and local administrators. We examine a conflict that arose within the REKO network in May–June 2016 when a small group of actors demanded that all local groups should implement similar rules, principles, and ethical standards. Our findings illustrate how moral, geographic, market, and power boundaries emerge in a self-organized grassroots-led food network. We further explicate the challenges that may appear within a self-organized grassroots-led food network, as it grows in scale and scope.


Foods ◽  
2013 ◽  
Vol 2 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Zeynep İlbay ◽  
Selin Şahin ◽  
Ş. Kirbaşlar

Sign in / Sign up

Export Citation Format

Share Document