scholarly journals Sodium Caseinate and Acetylated Mung Bean Starch for the Encapsulation of Lutein: Enhanced Solubility and Stability of Lutein

Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 65
Author(s):  
Yifan Lu ◽  
Bo Zhang ◽  
Huishan Shen ◽  
Xiangzhen Ge ◽  
Xiangxiang Sun ◽  
...  

Lutein is a kind of vital carotenoid with high safety and significant advantages in biological functions. However, poor water solubility and stability of lutein have limited its application. This study selected different weight ratios of sodium caseinate to acetylated mung bean starch (10:0, 9:1, 7:3, 5:5, 3:7, 1:9, and 0:10) to prepare lutein emulsions, and the microcapsules were produced by spray drying technology. The microstructure, physicochemical properties, and storage stability of microcapsules were investigated. The results show that the emulsion systems were typical non-Newtonian fluids. Lutein microcapsules were light yellow fine powder with smooth and relatively complete particle surface. The increase of sodium caseinate content led to the enhanced emulsion effect of the emulsion and the yield and solubility of microcapsules increased, and wettability and the average particle size became smaller. The encapsulation efficiency of lutein microcapsules ranged from 69.72% to 89.44%. The thermal characteristics analysis showed that the endothermic transition of lutein microcapsules occurred at about 125 °C. The microcapsules with sodium caseinate as single wall material had the worst stability. Thus, it provides a reference for expanding the application of lutein in food, biological, pharmaceutical, and other industries and improving the stability and water dispersion of other lipid-soluble active ingredients.

2011 ◽  
Vol 79 (1) ◽  
pp. 76-83 ◽  
Author(s):  
Punsandani Udabage ◽  
Amirtha Puvanenthiran ◽  
Jin Ah Yoo ◽  
Cornelis Versteeg ◽  
Mary Ann Augustin

The effects of high pressure (HP) treatment (100–400 MPa at 10–60°C) on the solubility of milk protein concentrate (MPC) powders were tested. The solubility, measured at 20°C, of fresh MPC powders made with no HP treatment was 66%. It decreased by 10% when stored for 6 weeks at ambient temperature (∼20°C) and continued to decrease to less than 50% of its initial solubility after 12 months of storage. Of the combinations of pressure and heat used, a pressure of 200 MPa at 40°C applied to the concentrate before spray drying was found to be the most beneficial for improved solubility of MPC powders. This combination of pressure/heat improved the initial cold water solubility to 85%. The solubility was maintained at this level after 6 weeks storage at ambient temperature and 85% of the initial solubility was preserved after 12 months. The improved solubility of MPC powders on manufacture and on storage are attributed to an altered surface composition arising from an increased concentration of non-micellar casein in the milk due to HP treatment prior to drying. The improved solubility of high protein powders (95% protein) made from blends of sodium caseinate and whey protein isolate compared with MPC powders (∼85% protein) made from ultrafiltered/diafiltered milk confirmed the detrimental role of micellar casein on solubility. The results suggest that increasing the non-micellar casein content by HP treatment of milk or use of blends of sodium caseinate and whey proteins are strategies that may be used to obtain high protein milk powders with enhanced solubility.


2019 ◽  
Vol 10 ◽  
pp. 1826-1832 ◽  
Author(s):  
Mohammad A Obeid ◽  
Ibrahim Khadra ◽  
Abdullah Albaloushi ◽  
Margaret Mullin ◽  
Hanin Alyamani ◽  
...  

Curcumin, a natural chemical compound found in Curcuma longa that has been used in antitumor and anti-inflammation applications, exhibits very limited water solubility and rapid in vivo degradation, which limits its clinical application. To overcome these limitations, niosome nanoparticles were prepared by microfluidic mixing for curcumin encapsulation. Niosome nanoparticles are lipid-based, and composed of non-ionic surfactants with cholesterol orientated into a membrane bilayer structure. Two different non-ionic surfactants were used and the mixing parameters were varied to optimize the characteristics of the prepared niosomes. The prepared niosomes had an average particle size of 70–230 nm depending on the type of non-ionic surfactant used and the mixing parameter. Moreover, all prepared niosomes were monodisperse with an average polydispersity index ranging from 0.07 to 0.3. All prepared niosomes were spherical as demonstrated by transmission electron microscopy. Curcumin was encapsulated with a maximum encapsulation efficiency of around 60% using Tween 85 as the non-ionic surfactant. Niosomes prepared by microfluidic mixing provided a controlled release of curcumin, as indicated by the release profile of curcumin, improving its therapeutic capability. These results demonstrate that niosomes prepared by microfluidic mixing to encapsulate curcumin are a promising delivery system to reach target cells.


Author(s):  
Amruta Papdiwal ◽  
Kishor Sagar ◽  
Vishal Pande

Poor water solubility and slow dissolution rate are major issues for the majority of upcoming and existing biologically active pharmaceutical compounds. Nateglinide is Biopharmaceutical Classification System Class-II drug that has low solubility and high permeability. The purpose of the present study was to improve the solubility and dissolution rate of Nateglinide by the preparation of nanosuspension by the nanoprecipitation technique. Nateglinide nanosuspension was evaluated for its particle size, in vitro dissolution study, and characterized by differential scanning calorimetry and scanning electron microscopy. The optimized formulation showed an average particle size of 207 nm and zeta potential of -25.8 mV. The rate of dissolution of the optimized nanosuspension was enhanced by 83% in 50 min relative to micronized suspension of nateglinide (37% in 50 min). This improvement was mainly due to the formulation of nanosized particles of Nateglinide. Stability study revealed that nanosuspension was more stable at room temperature and refrigerator condition with no significant change in particle size distribution. These results indicate that the nateglinide loaded nanosuspension may significantly improve in vitro dissolution rate and thereby possibly enhance the onset of therapeutic effect.


2012 ◽  
Vol 549 ◽  
pp. 183-187 ◽  
Author(s):  
Yan Wang ◽  
Jia Ying Xin ◽  
Tie Liu ◽  
Kai Lin ◽  
Chao Yue Zhang ◽  
...  

Native corn starch (NS) was activated by treatment with NaOH /Urea /H2O solution at low temperature to improve its chemical reactivity. Effects of the activation on the molecular level structure and morphology of the corn starch were investigated by mean of SEM. It was found that the average particle size of activated corn starch (AS) decreased to nanometer level, smaller than those of NS. The cold water solubility (CWS) has been increased from 0.45% to 96.4%. Effects of the activation on reactivity of the corn starches were investigated by analyzing the influences of the activation on degrees of substitutions (DS) of the esterifications. The DS of AS was higher than that of NS, from 0 to 0.1578, which indicated that NaOH/urea activation enhanced the chemical reaction activity of corn starch.


2017 ◽  
Vol 8 ◽  
pp. 2116-2125 ◽  
Author(s):  
Jilin Wang ◽  
Hejie Liao ◽  
Yuchun Ji ◽  
Fei Long ◽  
Yunle Gu ◽  
...  

In this work, a reaction coupling self-propagating high-temperature synthesis (RC-SHS) method was developed for the in situ controlled synthesis of novel, high activity TiB2/(TiB2–TiN) hierarchical/heterostructured nanocomposites using TiO2, Mg, B2O3, KBH4 and NH4NO3 as raw materials. The as-synthesized samples were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray energy dispersive spectroscopy (EDX), transition electron microscopy (TEM), high-resolution TEM (HRTEM) and selected-area electron diffraction (SAED). The obtained TiB2/TiN hierarchical/heterostructured nanocomposites demonstrated an average particle size of 100–500 nm, and every particle surface was covered by many multibranched, tapered nanorods with diameters in the range of 10–40 nm and lengths of 50–200 nm. In addition, the tapered nanorod presents a rough surface with abundant exposed atoms. The internal and external components of the nanorods were TiB2 and TiN, respectively. Additionally, a thermogravimetric and differential scanning calorimetry analyzer (TG-DSC) comparison analysis indicated that the as-synthesized samples presented better chemical activity than that of commercial TiB2 powders. Finally, the possible chemical reactions as well as the proposed growth mechanism of the TiB2/(TiB2–TiN) hierarchical/heterostructured nanocomposites were further discussed.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1074
Author(s):  
Wei Zhou ◽  
Yun Zhang ◽  
Ruyi Li ◽  
Shengfeng Peng ◽  
Roger Ruan ◽  
...  

Thymol has been applied as a spice and antibacterial agent in commercial products. However, the utilization of thymol in the food and pharmaceutical field has recently been limited by its poor water solubility and stability. In this work, a caseinate-stabilized thymol nanosuspension was fabricated by pH-driven methods to overcome those limitations. Firstly, the chemical stability of thymol at different pH value conditions was investigated. The physiochemical properties of thymol nanosuspensions were then characterized, such as average particle size, zeta potential, encapsulation efficiency, and loading capacity. Meanwhile, the X-ray diffraction results showed that thymol was present as an amorphous state in the nanosuspensions. The thermal stability of thymol was slightly enhanced by encapsulation through this process, and the thymol nanosuspensions were stable during the long-term storage, and the average particle size of nanosuspensions showed that there was no aggregation of nanosuspensions during storage and high temperature. Finally, the antimicrobial activity of thymol nanosuspensions was evaluated by investigating the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Salmomella enterca, Staphlococcus aureus, Escherichia coli, and Listeria monocytogenes. These results could provide useful information and implications for promoting the application of thymol in food, cosmetic, and pharmaceutical commercial products.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Soumaya El Bouchikhi ◽  
Philippe Pagès ◽  
Azeddine Ibrahimi ◽  
Yahya Bensouda

Abstract Background In order to improve the taste acceptability of certain nutritional oils, it has been decided in this study to introduce them in an emulsion whose surfactant is casein, then to carry out a lacto-fermentation, leading to a dairy-like product with added nutritional value and health benefit. In this context, a plan of mixtures has been proposed for the preparation of emulsions based on argan oil, sodium caseinate and starch, with concentrations ranged between (10–20%) and (0–2%) and (0–1.5%) respectively. All emulsions were homogenized at two high stirring velocities (10,000–20,000 rpm) and two stirring times (5–20 min). The physical stability was assessed by visual analysis and microstructural measurements. The Creaming index was calculated for selected emulsions to predict their creaming behavior. Results All emulsions showed a creaming behavior except one emulsion that required the highest values of all factors, which showed the highest creaming index with an average particle size of 11.27 μm. The absence or the variation of one or all factors led to various degrees of instabilities verified in all other emulsions. Due to the synergistic action of all parameters, the emulsion stability was attributed to the reduction of droplets size, the increase of continuous phase viscosity and the decrease of coalescence. Conclusion The parameters that played a major role in the stability of the emulsion consists of: stirring velocity and time, sodium caseinate/oil ratio and starch/sodium caseinate ratio. The underlying structure and the interaction of the fluid droplets within the solid like product is what holds the stability of the product against settling or separation during fermentation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hao Tang ◽  
Mohammad Aref Hasen Mamakhel ◽  
Mogens Christensen

AbstractSmCo5 is one of the most promising candidates for achieving a hard magnet with a high coercivity. Usually, composition, morphology, and size determine the coercivity of a magnet, however, it is challenging to synthesize phase pure SmCo5 with optimal size and high coercivity. In this paper, we report on the successful synthesis of phase pure SmCo5 with spherical/prolate spheroids shape. Size control is obtained by utilizing colloidal SiO2 as a template preventing aggregation and growth of the precursor. The amount of SiO2 nanoparticles (NPs) in the precursor tunes the average particle size (APS) of the synthesized SmCo5 with particle dimension from 740 to 504 nm. As-prepared pure SmCo5 fine powder obtained from using 2 ml SiO2 suspension possesses an APS of 625 nm and exhibits an excellent coercivity of 2986 kA m−1 (37.5 kOe) without alignment of the particles prior to magnetisation measurements. Comparing with a reference sample prepared without adding any SiO2 NPs, an enhancement of 35% of the coercivity was achieved. The improvement is due to phase purity, stable single-domain (SSD) size, and shape anisotropy originating from the prolate spheroid particles.


2013 ◽  
Vol 377 ◽  
pp. 173-179 ◽  
Author(s):  
Chan Yin ◽  
Xiao Yi Wei ◽  
Ji Hua Li ◽  
Fei Wang

Superparamagnetic Fe3O4nanoparticle with single phase has been synthesized successfully by a co-precipitation process. On the other hand, the effect of additive anhydrous ethanol in synthesis procedure was investigated for the magnetic properties of nanoparticles in this paper. The structure properties of synthetic Fe3O4particle were measured through XRD, FT-IR and TG-DSC devices. The characteristic peaks of Fe3O4have been observed to testify Fe3O4with single phase. The particle size and shape were observed by SEM and TEM measurements. The addition of anhydrous ethanol could enhance the dispersion of Fe3O4nanoparticles and restrain the agglomeration of nanoparticles. Therefore, the average particle size was about 18.2 nm, smaller than that of Fe3O4particles prepared without anhydrous ethanol of 24.3 nm. Correspondingly, the saturation magnetization (Ms) of Fe3O4prepared with and without anhydrous ethanol was determined to be 53.28 emu/g and 65.28 emu/g, respectively, lower than bulk magnetite particles of 90 emu/g. That is because, synthetic Fe3O4with smaller particle size obtains the higher surface curvature, which could enhance the disordered crystal orientation on the particle surface, so the saturation magnetization was decreased.


2021 ◽  
Author(s):  
Huadong Liu ◽  
Haoxuan Xu ◽  
Hewei Li

Abstract In this paper, carbon quantum dots (S-N-CDs) containing sulfur and nitrogen were synthesized using citric acid and thiourea. The average particle size of N-S-CDs is 8nm. The N-S-CDs surface contains various of functional groups, which has good water solubility. The fluorescence quantum yield of N-S-CDs is as high as 36.8%. N-S-CDs emits strong blue fluorescence in aqueous solution and has good photostability in neutral and alkaline Nacl solution. N-S-CDs has unique selectivity and high sensitivity to Fe3+ and Hg2+ ions, and the lowest detection limits are 1.4μM and 0.16μM, respectively. Under the interference of other metal ions, Fe3+ and Hg2+ ions can still effectively and stably quench the fluorescence of N-S-CDs. In addition, in the detection of actual samples, N-S-CDs can effectively detect Fe3+ and Hg2+ ions in tap water and lake water.


Sign in / Sign up

Export Citation Format

Share Document