scholarly journals Spontaneously Fermented Fruiting Bodies of Agaricus bisporus as a Valuable Source of New Isolates of Lactic Acid Bacteria with Functional Potential

Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1631
Author(s):  
Katarzyna Skrzypczak ◽  
Klaudia Gustaw ◽  
Ewa Jabłońska-Ryś ◽  
Aneta Sławińska ◽  
Waldemar Gustaw ◽  
...  

The aim of the investigation was the identification and initial study of lactic acid bacteria (LAB) isolated from spontaneously fermented (at 28 °C for 5 days) fruiting bodies of white button mushrooms (Agaricus bisporus). The isolated LAB were preliminarily characterized applying the MALDI-TOF Biotyper. Moreover, further phenotypical, genotypical characteristics as well as some functional and technological properties of the selected microorganisms (including the ability to produce exopolysaccharides, cell hydrophobicity, resistance to low pH, and bile salt) were also analyzed. Among autochthonous LAB (isolated from the tested mushroom raw material), Leuconostoc mesenteroides predominated in spontaneously fermented A. bisporus, while Lactiplantibacillus paraplantarum, Lactiplantibacillus plantarum, and Lactococcus lactis were less abundant. The highest dynamics of acidification of the mushroom material were exhibited by isolates EK55 and EK4 that, after 24 h of incubation, were able to decrease the pH of the raw material up to 5.06 ± 0.021 and 5.17 ± 0.015, respectively. Furthermore, the analysis of bacterial cell hydrophobicity indicated that the highest values of this parameter were noted for L. plantarum isolates EK12 (29.59 ± 0.7%), EK55 (28.75 ± 0.551%), and EK5 (27.33 ± 1.516%). It was revealed some of the analyzed LAB (especially isolates L. plantarum EK55 and L. paraplantarum EK4) exhibited functional and technological potential that might be used in the formulation of novel starter cultures.

2018 ◽  
pp. 81-85
Author(s):  
N. E. Posokina ◽  
O. Yu. Lyalina ◽  
E. S. Shishlova ◽  
A. I. Zakharova

Fermentation is a very complex dynamic process with numerous chemical, physical, and microbiological changes affecting the quality of the finished product. At present, in the industry starter cultures are practically not used, which leads to large losses of finished products (up to 40 %). The use of starter cultures allows not only to obtain high quality products, but also to significantly reduce production losses. The aim of the research was to study the process of directed fermentation of white cabbage variety "Slava" using strains of lactic acid bacteria and their consortium, taking into account the degree of their mutual influence. The following lactobacilli were used as strains of lactic acid bacteria – Lactobacillus brevis VKM V1309, Lactobacillus plantarum VKM V-578. Experiments were carried out on model media to obtain comparative data. In the process of directional fermentation using strains of lactic acid microorganisms and their consortium for the first time studied the dynamics of changes in quality indicators. Mathematical models developed in the course of research adequately describe the degree of destruction of glucose and fructose during fermentation. The model medium was made of white cabbage (raw material) for research, for this purpose it was subjected to homogenization and sterilization in order to create optimal conditions for the development of the target microflora and to determine the degree of destruction of glucose and fructose by various strains of lactic acid microorganisms. In the process of research, we found that the use of a consortium of lactic acid bacteria (L. brevis + L. plantarum) for this culture medium is impractical, but the addition of fructose in the amount of 0,5% by weight of the model medium can significantly intensify the process of fermentation of white cabbage.


1993 ◽  
Vol 2 (5) ◽  
pp. 403-412
Author(s):  
Riitta Maijala ◽  
Susanna Eerola ◽  
Pauli Hill ◽  
Esko Nurmi

The influence of five common starter cultures and glucono-delta-lactone (GDL) on the formation of histamine, tyramine, putrescine, cadaverine, spermine and spermidine in dry sausages was studied. Sausages were manufactured in a pilot plant from two different batches of raw material. No major differences were observed between the starter cultures studied in the biogenic amine levels detected during ripening. The lowest levels of histamine were detected in sausages fermented by GDL and Staphylococcae with or without lactic acid bacteria as a starter culture. In pure culture studies performed with a turbidometric method in MRS broth, non-starter lactic acid bacteria isolated from sausages were found to be more sensitive to acidic conditions than the starter strains used in the study. The addition of 2% histidine to MRS broth resulted in a tremendous increase in histamine production (from 1-2 to 6000 ppm). However, in histidine-fortified MRS broth with GDL addition, only 54 ppm of histamine was formed. According to these results, the pH decrease caused by GDL addition decreases histamine formation in dry sausages and in MRS broth. The differences in pH decrease may be one reason for the very varying concentrations of histamine detected in retail dry sausages.


2020 ◽  
Vol 29 (12) ◽  
pp. 59-63
Author(s):  
O.I. Parakhina ◽  
◽  
M.N. Lokachuk ◽  
L.I. Kuznetsova ◽  
E.N. Pavlovskaya ◽  
...  

The research was carried out within the framework of the theme of state assignment № 0593–2019–0008 «To develop theoretical foundations for creating composite mixtures for bakery products using physical methods of exposure that ensure homogeneity, stability of mixtures and bioavailability of nutrients, to optimize diets population of Russia». The data on the species belonging of new strains of lactic acid bacteria and yeast isolated from samples of good quality gluten-free starter cultures are presented. A comparative assessment of the antagonistic and acid-forming activity of strains of lactic acid bacteria and the fermentative activity of yeast was carried out. The composition of microbial compositions from selected strains of LAB and yeast was developed. The influence of the starter culture on the new microbial composition on the physicochemical, organoleptic indicators of the bread quality and resistance to mold and ropy-disease was investigated.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Prabin Koirala ◽  
Ndegwa Henry Maina ◽  
Hanna Nihtilä ◽  
Kati Katina ◽  
Rossana Coda

Abstract Background Lactic acid bacteria can synthesize dextran and oligosaccharides with different functionality, depending on the strain and fermentation conditions. As natural structure-forming agent, dextran has proven useful as food additive, improving the properties of several raw materials with poor technological quality, such as cereal by-products, fiber-and protein-rich matrices, enabling their use in food applications. In this study, we assessed dextran biosynthesis in situ during fermentation of brewers´ spent grain (BSG), the main by-product of beer brewing industry, with Leuconostoc pseudomesenteroides DSM20193 and Weissella confusa A16. The starters performance and the primary metabolites formed during 24 h of fermentation with and without 4% sucrose (w/w) were followed. Results The starters showed similar growth and acidification kinetics, but different sugar utilization, especially in presence of sucrose. Viscosity increase in fermented BSG containing sucrose occurred first after 10 h, and it kept increasing until 24 h concomitantly with dextran formation. Dextran content after 24 h was approximately 1% on the total weight of the BSG. Oligosaccharides with different degree of polymerization were formed together with dextran from 10 to 24 h. Three dextransucrase genes were identified in L. pseudomesenteroides DSM20193, one of which was significantly upregulated and remained active throughout the fermentation time. One dextransucrase gene was identified in W. confusa A16 also showing a typical induction profile, with highest upregulation at 10 h. Conclusions Selected lactic acid bacteria starters produced significant amount of dextran in brewers’ spent grain while forming oligosaccharides with different degree of polymerization. Putative dextransucrase genes identified in the starters showed a typical induction profile. Formation of dextran and oligosaccharides in BSG during lactic acid bacteria fermentation can be tailored to achieve specific technological properties of this raw material, contributing to its reintegration into the food chain.


2021 ◽  
pp. 1-7
Author(s):  
Harutoshi Tsuda ◽  
Kana Kodama

Abstract This paper reveals the technological properties of lactic acid bacteria isolated from raw milk (colostrum and mature milk) of Wagyu cattle raised in Okayama Prefecture, Japan. Isolates were identified based on their physiological and biochemical characteristics as well as 16S rDNA sequence analysis. Streptococcus lutetiensis and Lactobacillus plantarum showed high acid and diacetyl-acetoin production in milk after 24 h of incubation at 40 and 30°C, respectively. These strains are thought to have potential for use as starter cultures and adjunct cultures for fermented dairy products.


2021 ◽  
Vol 9 (7) ◽  
pp. 1346
Author(s):  
Mariana Petkova ◽  
Petya Stefanova ◽  
Velitchka Gotcheva ◽  
Angel Angelov

Traditional sourdoughs in Bulgaria were almost extinct during the centralized food production system. However, a rapidly developing trend of sourdough revival in the country is setting the demand for increased production and use of commercial starter cultures. The selection of strains for such cultures is based on geographical specificity and beneficial technological properties. In this connection, the aim of this study was to isolate, identify and characterize lactic acid bacteria (LAB) and yeasts from typical Bulgarian sourdoughs for the selection of strains for commercial sourdough starter cultures. Twelve samples of typical Bulgarian sourdoughs were collected from different geographical locations. All samples were analyzed for pH, total titratable acidity and dry matter content. Enumeration of LAB and yeast was also carried out. Molecular identification by 16S rDNA sequence analysis was performed for 167 LAB isolates, and 106 yeast strains were identified by ITS1-5.8S-ITS2 rRNA gene partial sequence analysis. The LAB strains were characterized according to their amylolytic and proteolytic activity and acidification capacity, and 11 strains were selected for further testing of their antimicrobial properties. The strains with the most pronounced antibacterial and antifungal activity are listed as recommended candidates for the development of starter cultures for sourdoughs or other food products.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2579
Author(s):  
Carmen-Alina Bolea ◽  
Mihaela Cotârleț ◽  
Elena Enachi ◽  
Vasilica Barbu ◽  
Nicoleta Stănciuc

Two multi-functional powders, in terms of anthocyanins from black rice (Oryza sativa L.) and lactic acid bacteria (Lactobacillus paracasei, L. casei 431®) were obtained through co-microencapsulation into a biopolymer matrix composed of milk proteins and inulin. Two extracts were obtained using black rice flour as a raw material and hot water and ethanol as solvents. Both powders (called P1 for aqueous extract and P2 for ethanolic extract) proved to be rich sources of valuable bioactives, with microencapsulation efficiency up to 80%, both for anthocyanins and lactic acid bacteria. A higher content of anthocyanins was found in P1, of 102.91 ± 1.83 mg cyanindin-3-O-glucoside (C3G)/g dry weight (DW) when compared with only 27.60 ± 17.36 mg C3G/g DW in P2. The morphological analysis revealed the presence of large, thin, and fragile structures, with different sizes. A different pattern of gastric digestion was observed, with a highly protective effect of the matrix in P1 and a maximum decrease in anthocyanins of approximatively 44% in P2. In intestinal juice, the anthocyanins decreased significantly in P2, reaching a maximum of 97% at the end of digestion; whereas in P1, more than 45% from the initial anthocyanins content remained in the microparticles. Overall, the short-term storage stability test revealed a release of bioactive from P2 and a decrease in P1. The viable cells of lactic acid bacteria after 21 days of storage reached 7 log colony forming units (CFU)/g DW.


1995 ◽  
Vol 58 (1) ◽  
pp. 62-69 ◽  
Author(s):  
K. ANJAN REDDY ◽  
ELMER H. MARTH

Three different split lots of Cheddar cheese curd were prepared with added sodium chloride (NaCl) potassium chloride (KCl) or mixtures of NaCl/KCl (2:1 1:1 1:2 and 3:4 all on wt/wt basis) to achieve a final salt concentration of 1.5 or 1.75%. At intervals during ripening at 3±1°C samples were plated with All-Purpose Tween (APT) and Lactobacillus Selection (LBS) agar. Isolates were obtained of bacteria that predominated on the agar media. In the first trial (Lactococcus lactis subsp. lactis plus L. lactis subsp. cremoris served as starter cultures) L. lactis subsp.lactis Lactobacillus casei and other lactobacilli were the predominant bacteria regardless of the salting treatment Received by the cheese. In the second trial (L. lactis subsp. lactis served as the starter culture) unclassified lactococci L. lactis subsp. lactis unclassified lactobacilli and L. casei predominated regardless of the salting treatment given the cheese. In the third trial (L. lactis subsp. cremoris served as the starter culture) unclassified lactococci unclassified lactobacilli L. casei and Pediococcus cerevisiae predominated regardless of the salting treatment applied to the cheese Thus use of KCl to replace some of the NaCl for salting cheese had no detectable effect on the kinds of lactic acid bacteria that developed in ripening Cheddar cheese.


Sign in / Sign up

Export Citation Format

Share Document