scholarly journals Genome-Wide Analysis of the miRNA–mRNAs Network Involved in Cold Tolerance in Populus simonii × P. nigra

Genes ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 430 ◽  
Author(s):  
Bo Zhou ◽  
Yutong Kang ◽  
Jingtong Leng ◽  
Qijiang Xu

Background: Cold tolerance is important for plants’ geographical distribution and survival in extreme seasonal variations of climate. However, Populus simonii × P. nigra shows wide adaptability and strong cold resistance. Transcriptional and post-transcriptional regulation of cold-responsive genes is crucial for cold tolerance in plants. To understand the roles of regulatory RNAs under cold induction in Populus simonii × P. nigra, we constructed cDNA and small RNA libraries from leaf buds treated or not with −4 °C for 8 h for analysis. Results: Through high-throughput sequencing and differential expression analysis, 61 miRNAs and 1229 DEGs were identified under cold induction condition in Populus simonii × P. nigra. The result showed that miR167a, miR1450, miR319a, miR395b, miR393a-5p, miR408-5p, and miR168a-5p were downregulated, whereas transcription level of miR172a increased under the cold treatment. Thirty-one phased-siRNA were also obtained (reads ≥ 4) and some of them proceeded from TAS3 loci. Analysis of the differentially expressed genes (DEGs) showed that transcription factor genes such as Cluster-15451.2 (putative MYB), Cluster-16493.29872 (putative bZIP), Cluster-16493.29175 (putative SBP), and Cluster-1378.1 (putative ARF) were differentially expressed in cold treated and untreated plantlets of Populus simonii × P. nigra. Integrated analysis of miRNAs and transcriptome showed miR319, miR159, miR167, miR395, miR390, and miR172 and their target genes, including MYB, SBP, bZIP, ARF, LHW, and ATL, were predicted to be involved in ARF pathway, SPL pathway, DnaJ related photosystem II, and LRR receptor kinase, and many of them are known to resist chilling injury. Particularly, a sophisticated regulatory model including miRNAs, phasiRNAs, and targets of them was set up. Conclusions: Integrated analysis of miRNAs and transcriptome uncovered the complicated regulation of the tolerance of cold in Populus simonii × P. nigra. MiRNAs, phasiRNAs, and gene-encoded transcription factors were characterized at a whole genome level and their expression patterns were proved to be complementary. This work lays a foundation for further research of the pathway of sRNAs and regulatory factors involved in cold tolerance.

2019 ◽  
Author(s):  
Fengyao Wu ◽  
Fengying Lu ◽  
Xin Fan ◽  
Jin Chao ◽  
Chuanmin Liu ◽  
...  

Abstract Background: Duck hepatitis A virus type 3 (DHAV-3) is one of the most harmful pathogens in the duck industry. However, the molecular mechanism underlying DHAV-3 infection in ducklings is remain poorly understood. To elucidate the genetic regulatory network for miRNA-mRNA and the signaling pathways involved in DHAV-3 infection in ducklings, we conducted global miRNA and mRNA expression profiling of duckling liver tissues infected with lethal DHAV-3 using high-throughput sequencing. Results: We found 156 differentially expressed miRNAs (DEMs) and 7717 differentially expressed miRNAs (DEGs) between mock-infected and DHAV-3-infected duckling livers. A total of 19,606 miRNA-mRNA pairs with negatively correlated expression patterns were identified in miRNA-mRNA networks constructed on the basis of these DEMs and DEGs. Moreover, immune-related pathways including the cytokine-cytokine receptor interaction, apoptosis, Toll-like receptor, Jak-STAT, and RIG-I-like receptor signaling pathway were significantly enriched through analyzing functions of mRNAs in the network in response to DHAV-3 infection. Besides, apl-miR-32-5p, apl-miR-125-5p, apl-miR-128-3p, apl-miR-460-5p, and novel-m0012-3p were identified as potential regulators in the immune-related signaling pathways during the DHAV-3 infection. Conclusions: To our knowledge, this is the first report on integrated analysis of miRNA-seq and mRNA-seq in DHAV-3-infected ducklings. The results indicated the important roles of miRNAs in regulating immune response genes and revealed the immune related miRNA-mRNA regulation network in the DHAV-3-infected duckling liver. Our findings may provide valuable information to further investigate the roles of miRNAs and their target genes in DHAV-3 replication and pathogenesis; additionally, they may offer clues for further understanding host-virus interactions.


2021 ◽  
Vol 11 ◽  
Author(s):  
Mou Peng ◽  
Xu Cheng ◽  
Wei Xiong ◽  
Lu Yi ◽  
Yinhuai Wang

Long non-coding RNAs (lncRNAs) act as competing endogenous RNAs (ceRNAs) to regulate mRNA expression through sponging microRNA in tumorigenesis and progression. However, following the discovery of new RNA interaction, the differentially expressed RNAs and ceRNA regulatory network are required to update. Our study comprehensively analyzed the differentially expressed RNA and corresponding ceRNA network and thus constructed a potentially predictive tool for prognosis. “DESeq2” was used to perform differential expression analysis. Two hundred and six differentially expressed (DE) lncRNAs, 222 DE miRNAs, and 2,463 DE mRNAs were found in this study. The lncRNA-mRNA interactions in the miRcode database and the miRNA-mRNA interactions in the starBase, miRcode, and mirTarBase databases were searched, and a competing endogenous RNA (ceRNA) network with 186 nodes and 836 interactions was subsequently constructed. Aberrant expression patterns of lncRNA NR2F1-AS1 and lncRNA AC010168.2 were evaluated in two datasets (GSE89006, GSE31684), and real-time polymerase chain reaction was also performed to validate the expression pattern. Furthermore, we found that these two lncRNAs were independent prognostic biomarkers to generate a prognostic lncRNA signature by univariate and multivariate Cox analyses. According to the lncRNA signature, patients in the high-risk group were associated with a poor prognosis and validated by an external dataset. A novel genomic-clinicopathologic nomogram to improve prognosis prediction of bladder cancer was further plotted and calibrated. Our study deepens the understanding of the regulatory ceRNA network and provides an easy-to-do genomic-clinicopathological nomogram to predict the prognosis in patients with bladder cancer.


2019 ◽  
Author(s):  
Fengyao Wu ◽  
Fengying Lu ◽  
Xin Fan ◽  
Jin Chao ◽  
Chuanmin Liu ◽  
...  

Abstract Background: Duck hepatitis A virus type 3 (DHAV-3) is one of the most harmful pathogens in the duck industry. However, the molecular mechanism underlying DHAV-3 infection in ducklings is remain poorly understood. To elucidate the genetic regulatory network for miRNA-mRNA and the signaling pathways involved in DHAV-3 infection in ducklings, we conducted global miRNA and mRNA expression profiling of duckling liver tissues infected with lethal DHAV-3 using high-throughput sequencing. Results: We found 156 differentially expressed miRNAs (DEMs) and 7717 differentially expressed miRNAs (DEGs) between mock-infected and DHAV-3-infected duckling livers. A total of 19,606 miRNA-mRNA pairs with negatively correlated expression patterns were identified in miRNA-mRNA networks constructed on the basis of these DEMs and DEGs. Moreover, immune-related pathways including the cytokine-cytokine receptor interaction, apoptosis, Toll-like receptor, Jak-STAT, and RIG-I-like receptor signaling pathway were significantly enriched through analyzing functions of mRNAs in the network in response to DHAV-3 infection. Besides, apl-miR-32-5p, apl-miR-125-5p, apl-miR-128-3p, apl-miR-460-5p, and novel-m0012-3p were identified as potential regulators in the immune-related signaling pathways during the DHAV-3 infection. Conclusions: To our knowledge, this is the first report on integrated analysis of miRNA-seq and mRNA-seq in DHAV-3-infected ducklings. The results indicated the important roles of miRNAs in regulating immune response genes and revealed the immune related miRNA-mRNA regulation network in the DHAV-3-infected duckling liver. Our findings may provide valuable information to further investigate the roles of miRNAs and their target genes in DHAV-3 replication and pathogenesis; additionally, they may offer clues for further understanding host-virus interactions.


2019 ◽  
Author(s):  
Fengyao Wu ◽  
Fengying Lu ◽  
Xin Fan ◽  
Jin Chao ◽  
Chuanmin Liu ◽  
...  

Abstract Background: Duck hepatitis A virus type 3 (DHAV-3) is one of the most harmful pathogens in the duck industry. However, the molecular mechanism underlying DHAV-3 infection in ducklings is remain poorly understood. To elucidate the genetic regulatory network for miRNA-mRNA and the signaling pathways involved in DHAV-3 infection in ducklings, we conducted global miRNA and mRNA expression profiling of duckling liver tissues infected with lethal DHAV-3 using high-throughput sequencing. Results: We found 156 differentially expressed miRNAs (DEMs) and 7717 differentially expressed miRNAs (DEGs) between mock-infected and DHAV-3-infected duckling livers. A total of 19,606 miRNA-mRNA pairs with negatively correlated expression patterns were identified in miRNA-mRNA networks constructed on the basis of these DEMs and DEGs. Moreover, immune-related pathways including the cytokine-cytokine receptor interaction, apoptosis, Toll-like receptor, Jak-STAT, and RIG-I-like receptor signaling pathway were significantly enriched through analyzing functions of mRNAs in the network in response to DHAV-3 infection. Besides, apl-miR-32-5p, apl-miR-125-5p, apl-miR-128-3p, apl-miR-460-5p, and novel-m0012-3p were identified as potential regulators in the immune-related signaling pathways during the DHAV-3 infection. Conclusions: To our knowledge, this is the first report on integrated analysis of miRNA-seq and mRNA-seq in DHAV-3-infected ducklings. The results indicated the important roles of miRNAs in regulating immune response genes and revealed the immune related miRNA-mRNA regulation network in the DHAV-3-infected duckling liver. Our findings may provide valuable information to further investigate the roles of miRNAs and their target genes in DHAV-3 replication and pathogenesis; additionally, they may offer clues for further understanding host-virus interactions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Biao Li ◽  
Jinzeng Yang ◽  
Yan Gong ◽  
Yu Xiao ◽  
Qinghua Zeng ◽  
...  

Liver is an important metabolic organ of mammals. During each transitional period of life, liver metabolism is programmed by a complex molecular regulatory system for multiple physiological functions, many pathways of which are regulated by hormones and cytokines, nuclear receptors, and transcription factors. To gain a comprehensive and unbiased molecular understanding of liver growth and development in Ningxiang pigs, we analyzed the mRNA, microRNA (miRNA), and proteomes of the livers of Ningxiang pigs during lactation, nursery, and fattening periods. A total of 22,411 genes (19,653 known mRNAs and 2758 novel mRNAs), 1122 miRNAs (384 known miRNAs and 738 novel miRNAs), and 1123 unique proteins with medium and high abundance were identified by high-throughput sequencing and mass spectrometry. We show that the differences in transcriptional, post-transcriptional, or protein levels were readily identified by comparing different time periods, providing evidence that functional changes that may occur during liver development are widespread. In addition, we found many overlapping differentially expressed genes (DEGs)/differentially expressed miRNAs (DEMs)/differentially expressed proteins (DEPs) related to glycolipid metabolism in any group comparison. These overlapping DEGs/DEMs/DGPs may play an important role in functional transformation during liver development. Short Time-series Expression Miner (STEM) analysis revealed multiple expression patterns of mRNA, miRNA, and protein in the liver. Furthermore, several diverse key Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including immune defense, glycolipid metabolism, protein transport and uptake, and cell proliferation and development, were identified by combined analysis of DEGs and DGPs. A number of predicted miRNA–mRNA–protein pairs were found and validated by qRT-PCR and parallel reaction monitoring (PRM) assays. The results provide new and important information about the genetic breeding of Ningxiang pigs, which represents a foundation for further understanding the molecular regulatory mechanisms of dynamic development of liver tissue, functional transformation, and lipid metabolism.


2020 ◽  
Vol 21 (11) ◽  
pp. 3857 ◽  
Author(s):  
Xiaohong Lu ◽  
Wenqian Liu ◽  
Chenggang Xiang ◽  
Xiaojun Li ◽  
Qing Wang ◽  
...  

Cucumber (Cucumis sativus L.) is one of the most important cucurbit vegetables but is often subjected to stress during cultivation. GRAS (gibberellic acid insensitive, repressor of GAI, and scarecrow) genes encode a family of transcriptional factors that regulate plant growth and development. In the model plant Arabidopsis thaliana, GRAS family genes function in formation of axillary meristem and root radial structure, phytohormone (gibberellin) signal transduction, light signal transduction and abiotic/biological stress. In this study, a gene family was comprehensively analyzed from the aspects of evolutionary tree, gene structure, chromosome location, evolutionary and expression pattern by means of bioinformatics; 37 GRAS gene family members have been screened from cucumber. We reconstructed an evolutionary tree based on multiple sequence alignment of the typical GRAS domain and conserved motif sequences with those of other species (A. thaliana and Solanum lycopersicum). Cucumber GRAS family was divided into 10 groups according to the classification of Arabidopsis and tomato genes. We conclude that tandem and segmental duplication have played important roles in the expansion and evolution of the cucumber GRAS (CsaGRAS) family. Expression patterns of CsaGRAS genes in different tissues and under cold treatment, combined with gene ontology annotation and interaction network analysis, revealed potentially different functions for CsaGRAS genes in response to cold tolerance, with members of the SHR, SCR and DELLA subfamilies likely playing important roles. In conclusion, this study provides valuable information and candidate genes for improving cucumber tolerance to cold stress.


2019 ◽  
Author(s):  
Haisheng Ding ◽  
Min Liu ◽  
Changfan Zhou ◽  
Xiangbin You ◽  
Tao Su ◽  
...  

Abstract Background: MicroRNAs (miRNAs) are small non-coding RNAs playing vital roles in regulating posttranscriptional gene expression. Elucidating the expression regulation of miRNAs underlying pig testis development will contribute to a better understanding of boar fertility and spermatogenesis. Results: In this study, miRNA expression profile was investigated in testes of Duroc and Meishan boars at 20, 75, and 270 days of age by high-throughput sequencing. Forty-five differentially expressed miRNAs were identified from testes of Duroc and Meishan boars before and after puberty. Integrated analysis of miRNA and mRNA profiles predicted many miRNA-mRNA pairs. Gene ontology and biological pathway analyses revealed that predicted target genes of ssc-mir-423-5p, ssc-mir-34c, ssc-mir-107, ssc-165 mir-196b-5p, ssc-mir-92a, ssc-mir-320, ssc-mir-10a-5p, and ssc-mir-181b were involved in sexual reproduction, male gamete generation, and spermatogenesis, and GnRH, Wnt, and MAPK signaling pathway. Four significantly differentially expressed miRNAs and their predicted target genes were validated by quantitative real-time polymerase chain reaction, and phospholipase C beta 1 ( PLCβ1) gene was verified to be a target of ssc-mir-423-5p . Conclusions: This study provides an insight into the functional roles of miRNAs in testis development and spermatogenesis and offers useful resources for understanding differences in sexual function development caused by the change in miRNAs expression between Duroc and Meishan boars.


2021 ◽  
Vol 12 ◽  
Author(s):  
Haihong Zhang ◽  
Yanli Wang ◽  
Jinghui Feng ◽  
Shuya Wang ◽  
Yan Wang ◽  
...  

Systemic lupus erythematosus (SLE) is a complex and heterogeneous autoimmune disease that the immune system attacks healthy cells and tissues. SLE is difficult to get a correct and timely diagnosis, which makes its morbidity and mortality rate very high. The pathogenesis of SLE remains to be elucidated. To clarify the potential pathogenic mechanism of SLE, we performed an integrated analysis of two RNA-seq datasets of SLE. Differential expression analysis revealed that there were 4,713 and 2,473 differentially expressed genes, respectively, most of which were up-regulated. After integrating differentially expressed genes, we identified 790 common differentially expressed genes (DEGs). Gene functional enrichment analysis was performed and found that common differentially expressed genes were significantly enriched in some important immune-related biological processes and pathways. Our analysis provides new insights into a better understanding of the pathogenic mechanisms and potential candidate markers for systemic lupus erythematosus.


2020 ◽  
Author(s):  
Wen Song ◽  
Fengxian Tang ◽  
Wenchao Cai ◽  
Qin Zhang ◽  
Fake Zhou ◽  
...  

Abstract Background: Cantaloupe is susceptible to cold stress when it is stored at low temperatures, resulting in the loss of edible and commercial quality. To ascertain the molecular mechanisms of low temperatures resistance in cantaloupe, a cold-sensitive cultivar, Golden Empress-308 (GE) and a cold-tolerant cultivar, Jia Shi-310 (JS), were selected in parallel for iTRAQ quantitative proteomic analysis. Results: The two kinds of commercial cultivars were exposed to a temperature of 0.5℃ for 0, 12 and 24 days. We found that the cold-sensitive cultivar (GE) suffered more severe damage as the length of the cold treatment increased. Proteomic analysis of both cultivars indicated that the number of differentially expressed proteins (DEPs) changed remarkably during the chilly treatment. JS expressed cold-responsive proteins more rapidly and mobilized more groups of proteins than GE. Furthermore, metabolic analysis revealed that more amino acids were up-regulated in JS during the early phases of low temperatures stress. The DEPs we found were mainly related to carbohydrate and energy metabolism, structural proteins, reactive oxygen species scavenging, amino acids metabolism and signal transduction. The consequences of phenotype assays, metabolic analysis and q-PCR validation confirm the findings of the iTRAQ analysis. Conclusion: We found that the prompt response and mobilization of proteins in JS allowed it to maintain a higher level of cold tolerance than GE, and that the slower cold responses in GE may be a vital reason for the severe chilling injury commonly found in this cultivar. The candidate proteins we identified will form the basis of future studies and may improve our understanding of the mechanisms of cold tolerance in cantaloupe.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sarah V. Schiessl ◽  
Daniela Quezada-Martinez ◽  
Ellen Tebartz ◽  
Rod J. Snowdon ◽  
Lunwen Qian

Abstract Plants in temperate areas evolved vernalisation requirement to avoid pre-winter flowering. In Brassicaceae, a period of extended cold reduces the expression of the flowering inhibitor FLOWERING LOCUS C (FLC) and paves the way for the expression of downstream flowering regulators. As with all polyploid species of the Brassicaceae, the model allotetraploid Brassica napus (rapeseed, canola) is highly duplicated and carries 9 annotated copies of Bna.FLC. To investigate whether these multiple homeologs and paralogs have retained their original function in vernalisation or undergone subfunctionalisation, we compared the expression patterns of all 9 copies between vernalisation-dependent (biennial, winter type) and vernalisation-independent (annual, spring type) accessions, using RT-qPCR with copy-specific primers and RNAseq data from a diversity set. Our results show that only 3 copies – Bna.FLC.A03b, Bna.FLC.A10 and to some extent Bna.FLC.C02 – are differentially expressed between the two growth types, showing that expression of the other 6 copies does not correlate with growth type. One of those 6 copies, Bna.FLC.C03b, was not expressed at all, indicating a pseudogene, while three further copies, Bna.FLC.C03a and Bna.FLC.C09ab, did not respond to cold treatment. Sequence variation at the COOLAIR binding site of Bna.FLC.A10 was found to explain most of the variation in gene expression. However, we also found that Bna.FLC.A10 expression is not fully predictive of growth type.


Sign in / Sign up

Export Citation Format

Share Document