scholarly journals A New SNP in Rice Gene Encoding Pyruvate Phosphate Dikinase (PPDK) Associated with Floury Endosperm

Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 465 ◽  
Author(s):  
Heng Wang ◽  
Tae-Ho Ham ◽  
Da-Eun Im ◽  
San Mar Lar ◽  
Seong-Gyu Jang ◽  
...  

Rice varieties with suitable flour-making qualities are required to promote the rice processed-food industry and to boost rice consumption. A rice mutation, Namil(SA)-flo1, produces grains with floury endosperm. Overall, grains with low grain hardness, low starch damage, and fine particle size are more suitable for use in flour processing grains with waxy, dull endosperm with normal grain hardness and a high amylose content. In this study, fine mapping found a C to T single nucleotide polymorphism (SNP) in exon 2 of the gene encoding cytosolic pyruvate phosphate dikinase (cyOsPPDK). The SNP resulted in a change of serine to phenylalanine acid at amino acid position 101. The gene was named FLOURY ENDOSPERM 4-5 (FLO4-5). Co-segregation analysis with the developed cleaved amplified polymorphic sequence (CAPS) markers revealed co-segregation between the floury phenotype and the flo4-5. This CAPS marker could be applied directly for marker-assisted selection. Real-time RT-PCR experiments revealed that PPDK was expressed at considerably higher levels in the flo4-5 mutant than in the wild type during the grain filling stage. Plastid ADP-glucose pyrophosphorylase small subunit (AGPS2a and AGPS2b) and soluble starch synthase (SSIIb and SSIIc) also exhibited enhanced expression in the flo4-5 mutant.

Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 325
Author(s):  
Ramin Rayee ◽  
Tran Dang Xuan ◽  
Tran Dang Khanh ◽  
Hoang-Dung Tran ◽  
Kifayatullah Kakar

The management of amylose and protein contents and cooking quality are the main challenges in rice macronutrients and quality improvement. This experiment was conducted to examine the rice grain quality, alkali digestion, and gel consistency responses to irrigation interval after anthesis. Three rice varieties (K1, K3, and K4) were subjected to different irrigation intervals (1, 2, and 3 d) after anthesis. The findings of this study showed that the protein content was markedly increased from 6.53–6.63% to 9.93–10.16%, whilst the amylose content was decreased significantly from 22.00–22.43% to 16.33–17.56% under stressed treatments at irrigation intervals, whilst the quantity of fatty acids was not affected. The 3-d irrigation interval recorded the highest protein content but the lowest amylose value. In addition, this treatment shows lower gelatinization temperature, but it is negatively associated with hard gel consistency under irrigation interval. This study highlights that the water management following a 3-d irrigation interval from anthesis is a useful and simple treatment to improve rice nutrients and grain cooking quality.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 804
Author(s):  
Me-Sun Kim ◽  
Ju-Young Yang ◽  
Ju-Kyung Yu ◽  
Yi Lee ◽  
Yong-Jin Park ◽  
...  

The primary goals of rice breeding programs are grain quality and yield potential improvement. With the high demand for rice varieties of premium cooking and eating quality, we developed low-amylose content breeding lines crossed with Samgwang and Milkyqueen through the marker-assisted backcross (MABc) breeding program. Trait markers of the SSIIIa gene referring to low-amylose content were identified through an SNP mapping activity, and the markers were applied to select favorable lines for a foreground selection. To rapidly recover the genetic background of Samgwang (recurrent parent genome, RPG), 386 genome-wide markers were used to select BC1F1 and BC2F1 individuals. Seven BC2F1 lines with targeted traits were selected, and the genetic background recovery range varied within 97.4–99.1% of RPG. The amylose content of the selected BC2F2 grains ranged from 12.4–16.8%. We demonstrated the MABc using a trait and genome-wide markers, allowing us to efficiently select lines of a target trait and reduce the breeding cycle effectively. In addition, the BC2F2 lines confirmed by molecular markers in this study can be utilized as parental lines for subsequent breeding programs of high-quality rice for cooking and eating.


Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 101
Author(s):  
Cristiana Pereira ◽  
Regina Menezes ◽  
Vanda Lourenço ◽  
Teresa Serra ◽  
Carla Brites

Rice consumed as white cooked polished grain has been considered a high glycemic index (GI) food, particularly compared with other starchy foods. However, the GI levels of rice based food can vary among different rice types and food processing technologies. Rice GI variation can be affected by several factors, such as rice variety, the genetic background of rice as well as due to crop edaphoclimatic conditions. The main difference in rice starch composition that influences GI is the amylose content. Besides the chemical composition of rice, the gelatinization characteristics and food processing can also contribute to starch retrogradation, thus increasing the level of resistant starch with a great influence on GI. To understand the glycemic response of rice types differing in amylose and viscosity profiles, four rice samples were analyzed and compared with standard and resistant HI-MAIZE corn starches. An in vitro enzymatic starch hydrolysis procedure was applied to estimate GI. The results indicate substantial differences in the starch hydrolysis of the two corn starches. Starch hydrolysis tended to be more rapid and efficient for ‘Waxy’ and ‘Ceres’ (intermediate-amylose) rice types than for ‘Maçarico’ (high-amylose rice). In addition, the data show that the Maçarico variety has the lowest estimated GI and the highest retrogradation rate compared with ‘Waxy’, ‘Ceres’ and ‘Basmati’ type. The results obtained reinforce the importance of knowing amylose content and viscosity profiles for the prediction of rice glycemic responses.


Nature ◽  
1985 ◽  
Vol 315 (6016) ◽  
pp. 200-204 ◽  
Author(s):  
Giorgio Morelli ◽  
Ferenc Nagy ◽  
Robert T. Fraley ◽  
Stephen G. Rogers ◽  
Nam-Hai Chua

Author(s):  
T.B. Kumeyko ◽  
◽  
N.G. Tumanian

The article studies the technological grain quality traits of rice varieties of Russian breeding Rapan, Flagman, Olimp, Azov, Patriot in the yield of 2017-2019 grown in the Abinsky district, Krasnodar region. Purpose of the research was to study the effect of doses of nitrogen fertilizers on the technological grain quality traits of rice varieties with a low amylose content. Rice varieties were evaluated by mass of 1000 absolutely dry grains, filminess, vitreousity, and fracture when grown with different doses of nitrogen fertilizers N60, N120. With an increase in the dose of nitrogen to N120, "the mass of 1000 absolutely dry grains", "vitreousity", "fracture" remained unchanged or the "filminess" changed. The pattern of changes in grain quality traits may indicate an intensive type of varieties Rapan and Olimp.


1987 ◽  
Vol 7 (8) ◽  
pp. 2783-2793
Author(s):  
S J Elledge ◽  
R W Davis

Ribonucleotide reductase catalyzes the first step in the pathway for the production of deoxyribonucleotides needed for DNA synthesis. The gene encoding the small subunit of ribonucleotide reductase was isolated from a Saccharomyces cerevisiae genomic DNA expression library in lambda gt11 by a fortuitous cross-reaction with anti-RecA antibodies. The cross-reaction was due to an identity between the last four amino acids of each protein. The gene has been named RNR2 and is centromere linked on chromosome X. The nucleotide sequence was determined, and the deduced amino acid sequence, 399 amino acids, shows extensive homology with other eucaryotic ribonucleotide reductases. Transplason mutagenesis was used to disrupt the RNR2 gene. A novel assay using colony color sectoring was developed to demonstrate visually that RNR2 is essential for mitotic viability. RNR2 encodes a 1.5-kilobase mRNA whose levels increase 18-fold after treatment with the DNA-damaging agent 4-nitroquinoline 1-oxide. CDC8 was also found to be inducible by DNA damage, but POL1 and URA3 were not inducible by 4-nitroquinoline 1-oxide. The expression of these genes defines a new mode of regulation for enzymes involved in DNA biosynthesis and sharpens our picture of the events leading to DNA repair in eucaryotic cells.


2017 ◽  
Vol 866 ◽  
pp. 144-147
Author(s):  
Duongruitai Nicomrat ◽  
Paisan Kanthang ◽  
Siriphatrc Chamutpong

The research was conducted to understand the diversity of microbial communities in the rice cultivars KDM 105 in the rice fields at Sanamchaikate, Chachoengsao Province. The culturing bacterial community in paddy soil before planting, during the planting and sowing of rice, and after rice collection as well as isolation of free nitrogen fixing bacteria under aerobic and anaerobic conditions were identified by molecular comparision of 16S small subunit rRNA genes as well as species diversity and their richness by Most Probable Number (MPN) method. Culturable bacterial isolates in the soil around the roots of rice varieties were determined for their physical appearances on the solid culture (Plate culturing method) and the microscopic observation under light microscope. It was found that bacteria in the paddy soil complemented with organic fertilizers and no pesticide application for over five years had a pH range from 5.2 to 5.5 cultivated jasmine rice, 8-9 log Units of free N2-fixing bacteria near the roots compared with those in other area having 4-5 log Units. Most of them were identified to be Pseudomonas sp. Microbacterium sp. Bacillus sp. Stenotrophomonas sp. and Burkholderia sp., by homology comparison of 16S rDNA gene at 98, 97, 99, 99.5, and 99%, respectively. This research revealed the recognizable complex and change in soil bacteria presented in paddy ecosystem. In any critical change of to the soil, the study of microbial diversity, compositions and their richness can be further useful for indicating proper soil management.


2018 ◽  
Vol 24 (1) ◽  
pp. 19
Author(s):  
Sobrizal Sobrizal ◽  
Carkum Carkum ◽  
Wijaya M. Indriatama ◽  
Aryanti Aryanti ◽  
Ita Dwimahyani

<p>In the middle of 1980s, rice self-sufficiency in Indonesia has been achieved, but the growth of rice production slowed down since the 1990s. Narrow genetic variability of released rice varieties contributed largely to the occurrence of leveling of potential rice yield over the past decades. To enlarge the genetic variability, an intersubspecies crossing of Koshihikari (japonica) and IR36 (indica) has been performed. Through this crossing, three high yielding and high yield quality promising lines of KI 37, KI 238, and KI 730 have been obtained. The objective of this study was to evaluate the superiorities of these lines through multi-location yield trials, pests, diseases, and grain qualities examinations. Examination methods used followed the release food crops variety procedure issued by the Indonesian Ministry of Agriculture. The result of examinations showed that the average yield of KI 730 was 7.47 t/ha, it was significantly higher than that of Ciherang (6,73 t/ha). KI 730 has a good grain quality, with translucent milled rice, a high percentage of milled rice (78.0%) and head rice (91.01%). The texture of its cooking rice was soft, sticky, with the amylose content of 20.41%. In addition, pests and diseases resistances of KI 730 were better than those of other lines tested. After evaluation by National Food Crops Release Variety Team, the KI 730 line was released as a national superior variety with the name of Tropiko. Tropiko should become an alternative variety to grow widely in order to increase national rice production and farmers income.</p>


Sign in / Sign up

Export Citation Format

Share Document