scholarly journals Characterization of Differentially Expressed miRNAs and Their Predicted Target Transcripts during Smoltification and Adaptation to Seawater in Head Kidney of Atlantic Salmon

Genes ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1059
Author(s):  
Alice Shwe ◽  
Tone-Kari Knutsdatter Østbye ◽  
Aleksei Krasnov ◽  
Sigmund Ramberg ◽  
Rune Andreassen

Smoltification and early seawater phase are critical developmental periods with physiological and biochemical changes in Atlantic salmon that facilitates survival in saltwater. MicroRNAs (miRNAs) are known to have important roles in development, but whether any miRNAs are involved in regulation of gene expression during smoltification and the adaption to seawater is largely unknown. Here, small RNA sequencing of materials from head kidney before, during smoltification and post seawater transfer were used to study expression dynamics of miRNAs, while microarray analysis was applied to study mRNA expression dynamics. Comparing all timepoints, 71 miRNAs and 2709 mRNAs were identified as differentially expressed (DE). Hierarchical clustering analysis of the DE miRNAs showed three major clusters with characteristic expression changes. Eighty-one DE mRNAs revealed negatively correlated expression patterns to DE miRNAs in Cluster I and III. Furthermore, 42 of these mRNAs were predicted as DE miRNA targets. Gene enrichment analysis of negatively correlated target genes showed they were enriched in gene ontology groups hormone biosynthesis, stress management, immune response, and ion transport. The results strongly indicate that post-transcriptional regulation of gene expression by miRNAs is important in smoltification and sea water adaption, and this study identifies several putative miRNA-target pairs for further functional studies.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Peirong Li ◽  
Tongbing Su ◽  
Deshuang Zhang ◽  
Weihong Wang ◽  
Xiaoyun Xin ◽  
...  

AbstractHeterosis is a complex phenomenon in which hybrids show better phenotypic characteristics than their parents do. Chinese cabbage (Brassica rapa L. spp. pekinensis) is a popular leafy crop species, hybrids of which are widely used in commercial production; however, the molecular basis of heterosis for biomass of Chinese cabbage is poorly understood. We characterized heterosis in a Chinese cabbage F1 hybrid cultivar and its parental lines from the seedling stage to the heading stage; marked heterosis of leaf weight and biomass yield were observed. Small RNA sequencing revealed 63 and 50 differentially expressed microRNAs (DEMs) at the seedling and early-heading stages, respectively. The expression levels of the majority of miRNA clusters in the F1 hybrid were lower than the mid-parent values (MPVs). Using degradome sequencing, we identified 1,819 miRNA target genes. Gene ontology (GO) analyses demonstrated that the target genes of the MPV-DEMs and low parental expression level dominance (ELD) miRNAs were significantly enriched in leaf morphogenesis, leaf development, and leaf shaping. Transcriptome analysis revealed that the expression levels of photosynthesis and chlorophyll synthesis-related MPV-DEGs (differentially expressed genes) were significantly different in the F1 hybrid compared to the parental lines, resulting in increased photosynthesis capacity and chlorophyll content in the former. Furthermore, expression of genes known to regulate leaf development was also observed at the seedling stage. Arabidopsis plants overexpressing BrGRF4.2 and bra-miR396 presented increased and decreased leaf sizes, respectively. These results provide new insight into the regulation of target genes and miRNA expression patterns in leaf size and heterosis for biomass of B. rapa.


Genes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 82
Author(s):  
Yunxiao Wei ◽  
Guoliang Li ◽  
Shujiang Zhang ◽  
Shifan Zhang ◽  
Hui Zhang ◽  
...  

Allopolyploidy is an evolutionary and mechanistically intriguing process involving the reconciliation of two or more sets of diverged genomes and regulatory interactions, resulting in new phenotypes. In this study, we explored the gene expression patterns of eight F2 synthetic Brassica napus using RNA sequencing. We found that B. napus allopolyploid formation was accompanied by extensive changes in gene expression. A comparison between F2 and the parent shows a certain proportion of differentially expressed genes (DEG) and activation\silent gene, and the two genomes (female parent (AA)\male parent (CC) genomes) showed significant differences in response to whole-genome duplication (WGD); non-additively expressed genes represented a small portion, while Gene Ontology (GO) enrichment analysis showed that it played an important role in responding to WGD. Besides, genome-wide expression level dominance (ELD) was biased toward the AA genome, and the parental expression pattern of most genes showed a high degree of conservation. Moreover, gene expression showed differences among eight individuals and was consistent with the results of a cluster analysis of traits. Furthermore, the differential expression of waxy synthetic pathways and flowering pathway genes could explain the performance of traits. Collectively, gene expression of the newly formed allopolyploid changed dramatically, and this was different among the selfing offspring, which could be a prominent cause of the trait separation. Our data provide novel insights into the relationship between the expression of differentially expressed genes and trait segregation and provide clues into the evolution of allopolyploids.


2020 ◽  
Vol 20 ◽  
Author(s):  
Zsuzsanna Molnár ◽  
Zsófia Bánlaki ◽  
Anikó Somogyi ◽  
Zoltán Herold ◽  
Magdolna Herold ◽  
...  

Background: Type 2 diabetes (T2DM) and colorectal cancer (CRC) are both known to modulate gene expression patterns in peripheral blood leukocytes (PBLs). Objective : As T2DM has been shown to increase the incidence of CRC, we were prompted to check whether diabetes affects mRNA signatures in PBLs isolated from CRC patients. Methods : 22 patients were recruited to the study and classified into four cohorts (healthy controls; T2DM; CRC; CRC and T2DM). Relative expression levels of 573 cell signaling gene transcripts were determined by reverse transcription real-time PCR assays run on low-density OpenArray platforms. Enrichment analysis was performed with the g:GOSt profiling tool to order differentially expressed genes into functional pathways. Results : 49 genes were found to be significantly up- or downregulated in tumorous diabetic individuals as compared to tumor-free diabetic controls, while 11 transcripts were differentially regulated in patients with CRC versus healthy, tumor-free and non-diabetic controls. Importantly, these gene sets were completely distinct, implying that diabetes exerts profound influence on the transcription of signaling genes in CRC. The top 5 genes showing most significant expression differences in both contexts were PCK2, MAPK9, CCND1, HMBS, TLR3 (p≤ 0.0040) and CREBBP, PPIA, NFKBIL1, MDM2 and SELPLG (p0.0121), respectively. Functional analysis revealed that most significantly affected pathways were cytokine, interleukin and PI3K/Akt/mTOR signaling cascades as well as mitotic regulation. Conclusions : We propose that differentially expressed genes listed above might be potential biomarkers of CRC and should be studied further on larger patient groups. Diabetes might promote colorectal carcinogenesis by impairing signaling pathways in PBLs.


2021 ◽  
Author(s):  
Xinjian Li ◽  
Xuelei Han ◽  
Caixia Sun ◽  
Gaiying Li ◽  
Kejun Wang ◽  
...  

Abstract Background: Epidemic diseases cause great economic loss in pig farms each year, some of which are characterized mainly in spleen. Yorkshire pig is the most popular used first dam in the commercial pork production system. But the mRNA and lncRNA expression networks in developing Yorkshire pig spleens remain obscure. Results: Here, we profiled the systematic characters of mRNA and lncRNA repertoires in three groups of spleens from nine Yorkshire pigs, each three aged at 7 days, 90 days and 180 days. By using a precise mRNA and lncRNA identification pipeline, we identified 19,647 genes and 219 known and 3,219 putative lncRNA transcripts, 1,729 genes and 64 lncRNAs therein were found to express differentially in three groups. Gene expression characteristics of genes and lncRNAs were found to be basically fixed before 90 days after birth. Enrichment analysis of differentially expressed genes and potential target genes of differentially expressed lncRNAs both displayed crucial roles of up-regulation in immune activation and hematopoiesis and down-regulation in cell replication and division in 90 and 180 days compared to 7 days. The unregulated terms and their significance levels in 90 and 180 days both showed an extremely high degree of consistency. ENSSSCT00000001325 was the only lncRNA transcript that existed in three groups. CDK1, PCNA and PLK were detected to be hub genes that varied with age. BNIP3L, IL5, CD38 and TGFβ1 were found to be common top regulators from 7 to 90 and 180 days while ERAP1, NLRC5 and IL2RG were top regulators from 90 to 180 days.Conclusions: This study provided the first mRNA and lncRNA expression profiles in Yorkshire spleens at three developmental stages. We established gene expression modules and networks in the spleen of pigs from immune system initiation to adulthood. Our results are helpful for the study of transcriptome and functional genomics of spleen tissue in farm animals.


2021 ◽  
Vol 17 ◽  
pp. 117693432110413
Author(s):  
Chaoxin Zhang ◽  
Tao Wang ◽  
Tongyan Cui ◽  
Shengwei Liu ◽  
Bing Zhang ◽  
...  

The CCAAT/enhancer binding protein (C/EBP) transcription factors (TFs) regulate many important biological processes, such as energy metabolism, inflammation, cell proliferation etc. A genome-wide gene identification revealed the presence of a total of 99 C/EBP genes in pig and 19 eukaryote genomes. Phylogenetic analysis showed that all C/EBP TFs were classified into 6 subgroups named C/EBPα, C/EBPβ, C/EBPδ, C/EBPε, C/EBPγ, and C/EBPζ. Gene expression analysis showed that the C/EBPα, C/EBPβ, C/EBPδ, C/EBPγ, and C/EBPζ genes were expressed ubiquitously with inconsistent expression patterns in various pig tissues. Moreover, a pig C/EBP regulatory network was constructed, including C/EBP genes, TFs and miRNAs. A total of 27 feed-forward loop (FFL) motifs were detected in the pig C/EBP regulatory network. Based on the RNA-seq data, gene expression patterns related to FFL sub-network were analyzed in 27 adult pig tissues. Certain FFL motifs may be tissue specific. Functional enrichment analysis indicated that C/EBP and its target genes are involved in many important biological pathways. These results provide valuable information that clarifies the evolutionary relationships of the C/EBP family and contributes to the understanding of the biological function of C/EBP genes.


2021 ◽  
Author(s):  
Robert Mukiibi ◽  
Carolina Peñaloza ◽  
Alejandro Gutierrez ◽  
José M. Yáñez ◽  
Ross D. Houston ◽  
...  

Salmon rickettsial septicaemia (SRS), caused by the intracellular bacteria Piscirickettsia Salmonis, generates significant mortalities to farmed Atlantic salmon, particularly in Chile. Due to its economic importance, a wealth of research has focussed on the biological mechanisms underlying pathogenicity of P. salmonis, the host response, and genetic variation in host resistance. DNA methylation is a fundamental epigenetic mechanism that influences almost every biological process via the regulation of gene expression and plays a key role in the response of an organism to stimuli. In the current study, the role of head kidney and liver DNA methylation in the response to P. salmonis infection was investigated in a commercial Atlantic salmon population. A total of 66 salmon were profiled using reduced representation bisulphite sequencing (RRBS), with head kidney and liver methylomes compared between infected animals (3 and 9 days post infection) and uninfected controls. These included groups of salmon with divergent (high or low) breeding values for resistance to P. salmonis infection, to examine the influence of genetic resistance. Head kidney and liver showed organ-specific global methylation patterns, but with similar distribution of methylation across gene features. Integration of methylation with RNA-Seq data revealed that methylation levels predominantly showed a negative correlation with gene expression, although positive correlations were also observed. Methylation within the first exon showed the strongest negative correlation with gene expression. A total of 911 and 813 differentially methylated CpG sites were identified between infected and control samples in the head kidney at 3 and 9 days respectively, whereas only 30 and 44 sites were differentially methylated in the liver. Differential methylation in the head kidney was associated with immunological processes such as actin cytoskeleton regulation, phagocytosis, endocytosis and pathogen associated pattern receptor signaling. We also identified 113 and 48 differentially methylated sites between resistant and susceptible fish in the head kidney and liver respectively. Our results contribute to the growing understanding of the role of methylation in regulation of gene expression and response to infectious diseases, and in particular reveal key immunological functions regulated by methylation in Atlantic salmon in response to P. salmonis.


2006 ◽  
Vol 84 (2) ◽  
pp. 189-198 ◽  
Author(s):  
Ruth C. Martin ◽  
Po-Pu Liu ◽  
Hiroyuki Nonogaki

microRNAs (miRNAs) are small (21–24 nucleotides), single-stranded RNAs that regulate target gene expression at transcriptional and posttranscriptional levels. miRNAs play crucial roles in plant development, maintenance of homeostasis, and responses to environmental signals. miRNAs and their target genes, which can be computationally predicted in plants, are expressed in developing and germinating seeds as in other plant tissues, suggesting that miRNAs may be involved in the regulation of gene expression in seeds. Profiling multiple miRNAs expressed in developing and germinating seeds, characterizing their expression patterns in a spatio-temporal manner, and elucidating their biological functions will provide information essential for understanding the mechanisms of seed development and germination. In this review, an overview of the recent technical advances in seed miRNA research and their potential applications for plant, specifically seed, research are presented.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Emi Dika ◽  
Elisabetta Broseghini ◽  
Elisa Porcellini ◽  
Martina Lambertini ◽  
Mattia Riefolo ◽  
...  

AbstractMalignant cutaneous melanoma (CM) is a potentially lethal form of skin cancer whose worldwide incidence has been constantly increasing over the past decades. During their lifetime, about 8% of CM patients will develop multiple primary melanomas (MPMs), usually at a young age and within 3 years from the first tumor/diagnosis. With the aim of improving our knowledge on MPM biology and pathogenesis, we explored the miRNome of 24 single and multiple primary melanomas, including multiple tumors from the same patient, using a small RNA-sequencing approach. From a supervised analysis, 22 miRNAs were differentially expressed in MPM compared to single CM, including key miRNAs involved in epithelial–mesenchymal transition. The first and second melanoma from the same patient presented a different miRNA profile. Ten miRNAs, including miR-25-3p, 149-5p, 92b-3p, 211-5p, 125a-5p, 125b-5p, 205-5p, 200b-3p, 21-5p, and 146a-5p, were further validated in 47 single and multiple melanoma samples. Pathway enrichment analysis of miRNA target genes revealed a more differentiated and less invasive status of MPMs compared to CMs. Bioinformatic analyses at the miRNA isoform (isomiR) level detected a panel of highly expressed isomiRs belonging to miRNA families implicated in human tumorigenesis, including miR-200, miR-30, and miR-10 family. Moreover, we identified hsa-miR-125a-5p|0|−2 isoform as tenfold over-represented in melanoma than the canonical form and differentially expressed in MPMs arising in the same patient. Target prediction analysis revealed that the miRNA shortening could change the pattern of target gene regulation, specifically in genes implicated in cell adhesion and neuronal differentiation. Overall, we provided a putative and comprehensive characterization of the miRNA/isomiR regulatory network of MPMs, highlighting mechanisms of tumor development and molecular features differentiating this subtype from single melanomas.


2021 ◽  
Vol 36 ◽  
pp. 153331752110217
Author(s):  
Liu Lu ◽  
Wen-Zhuo Dai ◽  
Xi-Chen Zhu ◽  
Tao Ma

This paper was aimed to analyze the microRNA (miRNA) signatures in Alzheimer disease (AD) and find the significant expressions of miRNAs, their target genes, the functional enrichment analysis of the confirmed genes, and potential drug treatment. The miRNA expression information of the gene expression profile data was downloaded from the Gene Expression Omnibus database. The total data sample size is 1309, including 1021 AD samples and 288 normal samples. A total of 21 differentially expressed miRNAs were obtained, of which 16 (hsa-miR-6761-3p, hsa-miR-6747-3p, hsa-miR-6875-3p, hsa-miR-6754-3p, hsa-miR-6736-3p, hsa-miR-6762-3p, hsa-miR-6787-3p, hsa-miR-208a-5p, hsa-miR-6740-3p, hsa-miR-6778-3p, hsa-miR-595, hsa-miR-6753-3p, hsa-miR-4747-3p, hsa-miR-3646, hsa-miR-6716-3p and hsa-miR-4435) were up-regulated and 5 (hsa-miR-125a-3p, hsa-miR-22-3p, hsa-miR-24-3p, hsa-miR-6131 and hsa-miR-125b-1-3p) were down-regulated in AD. A total of 6 miRNAs (hsa-miR-595, hsa-miR-3646, hsa-miR-4435 hsa-miR-125a-3p, hsa-miR-22-3p and hsa-miR-24-3p) and 78 miRNA-disease-related gene sub-networks were predicted, and 116 ceRNA regulatory relationship pairs, and the ceRNA regulatory network were obtained. The results of enrichment analysis suggested that the main target pathways of several miRNAs differentially expressed in AD were mitogen-activated protein kinase signal pathway. According to the prediction results of Drug-Gene Interaction database 2.0, we obtained 53 pairs of drug-gene interaction, including 7 genes (PTGS2, EGFR, CALM1, PDE4D, FGFR2, HMGCR, cdk6) and 53 drugs. We hope our results are helpful to find a viable way to prevent, delay the onset, diagnose, and treat AD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kent M. Reed ◽  
Kristelle M. Mendoza ◽  
Juan E. Abrahante ◽  
Sandra G. Velleman ◽  
Gale M. Strasburg

Precise regulation of gene expression is critical for normal muscle growth and development. Changes in gene expression patterns caused by external stressors such as temperature can have dramatic effects including altered cellular structure and function. Understanding the cellular mechanisms that underlie muscle growth and development and how these are altered by external stressors are crucial in maintaining and improving meat quality. This study investigated circular RNAs (circRNAs) as an emerging aspect of gene regulation. We used data mining to identify circRNAs and characterize their expression profiles within RNAseq data collected from thermally challenged turkey poults of the RBC2 and F-lines. From sequences of 28 paired-end libraries, 8924 unique circRNAs were predicted of which 1629 were common to all treatment groups. Expression analysis identified significant differentially expressed circRNAs (DECs) in comparisons between thermal treatments (41 DECs) and between genetic lines (117 DECs). No intersection was observed between the DECs and differentially expressed gene transcripts indicating that the DECs are not simply the result of expression changes in the parental genes. Comparative analyses based on the chicken microRNA (miRNA) database suggest potential interactions between turkey circRNAs and miRNAs. Additional studies are needed to reveal the functional significance of the predicted circRNAs and their role in muscle development in response to thermal challenge. The DECs identified in this study provide an important framework for future investigation.


Sign in / Sign up

Export Citation Format

Share Document