scholarly journals Genomic Approaches for Improvement of Tropical Fruits: Fruit Quality, Shelf Life and Nutrient Content

Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1881
Author(s):  
Malarvizhi Mathiazhagan ◽  
Bhavya Chidambara ◽  
Laxman R. Hunashikatti ◽  
Kundapura V. Ravishankar

The breeding of tropical fruit trees for improving fruit traits is complicated, due to the long juvenile phase, generation cycle, parthenocarpy, polyploidy, polyembryony, heterozygosity and biotic and abiotic factors, as well as a lack of good genomic resources. Many molecular techniques have recently evolved to assist and hasten conventional breeding efforts. Molecular markers linked to fruit development and fruit quality traits such as fruit shape, size, texture, aroma, peel and pulp colour were identified in tropical fruit crops, facilitating Marker-assisted breeding (MAB). An increase in the availability of genome sequences of tropical fruits further aided in the discovery of SNP variants/Indels, QTLs and genes that can ascertain the genetic determinants of fruit characters. Through multi-omics approaches such as genomics, transcriptomics, metabolomics and proteomics, the identification and quantification of transcripts, including non-coding RNAs, involved in sugar metabolism, fruit development and ripening, shelf life, and the biotic and abiotic stress that impacts fruit quality were made possible. Utilizing genomic assisted breeding methods such as genome wide association (GWAS), genomic selection (GS) and genetic modifications using CRISPR/Cas9 and transgenics has paved the way to studying gene function and developing cultivars with desirable fruit traits by overcoming long breeding cycles. Such comprehensive multi-omics approaches related to fruit characters in tropical fruits and their applications in breeding strategies and crop improvement are reviewed, discussed and presented here.

EDIS ◽  
1969 ◽  
Vol 2004 (5) ◽  
Author(s):  
Mark A. Mossler ◽  
Olaf Norman Nesheim

A Pest Management Strategic Plan was held in Homestead, Florida on March 31, 2003. Participants developed strategic plans for avocado, banana, carambola, guava, lychee, longan, mamey sapote, mango, papaya, passionfruit, sapodilla, and sugar apple. There are several areas of action which seem to be common to the tropical fruits in general. First, there has been change in water flow in the area due to the Everglades restoration plan. Saturated conditions are exacerbating existing fungal diseases and causing new problems to surface. Secondly, there is a lack of education with regard to flower predation and disease control during bloom. There are also a number of fruit quality issues which must be addressed both pre and post-harvest. Finally, insect problems are often specific to a crop, except for pests such as scales and mealybugs, which have wide host ranges, and are recognized as problems for most of the tropical fruits. This document is CIR 1442 one of a series of publications of the Pesticide Information Office, Food Science and Human Nutrition Department, Florida Cooperative Extension Service, UF/IFAS. Published November 2003. https://edis.ifas.ufl.edu/pi062


Horticulturae ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 26
Author(s):  
Yaping Ma ◽  
Dapeng Zhang ◽  
Zhuangji Wang ◽  
Lihua Song ◽  
Bing Cao

‘Lingwu Changzao’ (Ziziphus jujuba Mill. cv. Lingwuchangzao), a cultivar of Ziziphus in the Rhamnaceae family, is a traditional jujube cultivar in Ningxia, China. For ‘Lingwu Changzao’, morphological traits are prominent in characterizing fruit yield, quality, and consumer acceptance. However, morphological measurements for ‘Lingwu Changzao’ cultivation are limited. Therefore, the objective of this study is to measure the growing patterns of selected morphological traits during ‘Lingwu Changzao’ fruit development. Eight morphological traits, including four fruit traits (fruit length, diameter, weight, and flesh (mesocarp) thickness), three stone traits (stone length, diameter, and weight), and fruit firmness (also known as fruit hardness), were measured over a 3-mo (months) period, covering a completed fruit development period. Results indicate that the growing patterns of fruit traits coincide with double ‘S’ growth curves, which mainly present the growth of ‘Lingwu Changzao’ fruit. Increases of stone traits terminated in the early fruit growth period, while fruit traits continuously increased till the end of the 3-mo period. That implies a high fruit-stone ratio, i.e., a desirable quality attribute for ‘Lingwu Changzao’ as fresh-eating fruits. The results presented in this study can serve as one part of the standard dataset for jujube fruit cultivation in China, and it can also support decisions in plant breeding and field managements for ‘Lingwu Changzao’.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ian S. E. Bally ◽  
◽  
Aureliano Bombarely ◽  
Alan H. Chambers ◽  
Yuval Cohen ◽  
...  

Abstract Background Mango, Mangifera indica L., an important tropical fruit crop, is grown for its sweet and aromatic fruits. Past improvement of this species has predominantly relied on chance seedlings derived from over 1000 cultivars in the Indian sub-continent with a large variation for fruit size, yield, biotic and abiotic stress resistance, and fruit quality among other traits. Historically, mango has been an orphan crop with very limited molecular information. Only recently have molecular and genomics-based analyses enabled the creation of linkage maps, transcriptomes, and diversity analysis of large collections. Additionally, the combined analysis of genomic and phenotypic information is poised to improve mango breeding efficiency. Results This study sequenced, de novo assembled, analyzed, and annotated the genome of the monoembryonic mango cultivar ‘Tommy Atkins’. The draft genome sequence was generated using NRGene de-novo Magic on high molecular weight DNA of ‘Tommy Atkins’, supplemented by 10X Genomics long read sequencing to improve the initial assembly. A hybrid population between ‘Tommy Atkins’ x ‘Kensington Pride’ was used to generate phased haplotype chromosomes and a highly resolved phased SNP map. The final ‘Tommy Atkins’ genome assembly was a consensus sequence that included 20 pseudomolecules representing the 20 chromosomes of mango and included ~ 86% of the ~ 439 Mb haploid mango genome. Skim sequencing identified ~ 3.3 M SNPs using the ‘Tommy Atkins’ x ‘Kensington Pride’ mapping population. Repeat masking identified 26,616 genes with a median length of 3348 bp. A whole genome duplication analysis revealed an ancestral 65 MYA polyploidization event shared with Anacardium occidentale. Two regions, one on LG4 and one on LG7 containing 28 candidate genes, were associated with the commercially important fruit size characteristic in the mapping population. Conclusions The availability of the complete ‘Tommy Atkins’ mango genome will aid global initiatives to study mango genetics.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 358
Author(s):  
Muhammad Moaaz Ali ◽  
Raheel Anwar ◽  
Ahmed F. Yousef ◽  
Binqi Li ◽  
Andrea Luvisi ◽  
...  

Fruit quality is certainly influenced by biotic and abiotic factors, and a main quality attribute is the external appearance of the fruit. Various possible agronomical approaches are able to regulate the fruit microenvironment and, consequently, improve fruit quality and market value. Among these, fruit bagging has recently become an integral part of fruits’ domestic and export markets in countries such as Japan, China, Korea Australia and the USA because it is a safe and eco-friendly technique to protect fruits from multiple stresses, preserving or improving the overall quality. Despite increasing global importance, the development of suitable bagging materials and, above all, their use in the field is quite laborious, so that serious efforts are required to enhance and standardize bagging material according to the need of the crops/fruits. This review provides information about the effects of bagging technique on the fruit aspect and texture, which are the main determinants of consumer choice.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 614
Author(s):  
Diego Cabezas ◽  
Ivone de Bem Oliveira ◽  
Mia Acker ◽  
Paul Lyrene ◽  
Patricio R. Munoz

Wild germplasm can be classified as the raw material essential for crop improvement. Introgression of wild germplasm is normally used in breeding to increase crop quality or resilience to evolving biotic and abiotic threats. Here, we explore the potential of introgressing Vaccinium elliottii into commercial blueberry germplasm. Vaccinium elliottii is a wild diploid blueberry species endemic to the southeastern United States that possesses highly desirable and economically important traits for blueberry breeding such as: short bloom to ripe period, adaptation to upland sandy soils, disease resistance, firmness, and pleasant flavor. To examine the potential of hybridization, we evaluated populations of interspecific hybrids across multiple stages of breeding (i.e., F1, F2, and backcrosses) in two crop seasons. We used our extensive pedigree data to generate breeding values for pre-breeding blueberry hybrid populations. Hybrid performance was evaluated considering fitness (i.e., plant vigor and plant height) in addition to evaluating six fruit-quality and marketable-related traits (i.e., size, firmness, acidity, soluble solids, weight, and yield). Overall, F2 and backcrosses rapidly achieved market thresholds, presenting values not significantly different from commercial blueberry germplasm. Our results confirmed the potential of exploiting the high genetic variability contained in V. elliottii for interspecific hybridization. Additionally, we developed germplasm resources that can be further evaluated and utilized in the breeding process, advancing selections for fruit quality and environmental adaptation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ming-Yue Zhang ◽  
Cheng Xue ◽  
Hongju Hu ◽  
Jiaming Li ◽  
Yongsong Xue ◽  
...  

AbstractPear is a major fruit tree crop distributed worldwide, yet its breeding is a very time-consuming process. To facilitate molecular breeding and gene identification, here we have performed genome-wide association studies (GWAS) on eleven fruit traits. We identify 37 loci associated with eight fruit quality traits and five loci associated with three fruit phenological traits. Scans for selective sweeps indicate that traits including fruit stone cell content, organic acid and sugar contents might have been under continuous selection during breeding improvement. One candidate gene, PbrSTONE, identified in GWAS, has been functionally verified to be involved in the regulation of stone cell formation, one of the most important fruit quality traits in pear. Our study provides insights into the complex fruit related biology and identifies genes controlling important traits in pear through GWAS, which extends the genetic resources and basis for facilitating molecular breeding in perennial trees.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Mercia Rasoanoro ◽  
Steven M. Goodman ◽  
Milijaona Randrianarivelojosia ◽  
Mbola Rakotondratsimba ◽  
Koussay Dellagi ◽  
...  

Abstract Background Numerous studies have been undertaken to advance knowledge of apicomplexan parasites infecting vertebrates, including humans. Of these parasites, the genus Plasmodium has been most extensively studied because of the socio-economic and public health impacts of malaria. In non-human vertebrates, studies on malaria or malaria-like parasite groups have been conducted but information is far from complete. In Madagascar, recent studies on bat blood parasites indicate that three chiropteran families (Miniopteridae, Rhinonycteridae, and Vespertilionidae) are infected by the genus Polychromophilus with pronounced host specificity: Miniopterus spp. (Miniopteridae) harbour Polychromophilus melanipherus and Myotis goudoti (Vespertilionidae) is infected by Polychromophilus murinus. However, most of the individuals analysed in previous studies were sampled on the western and central portions of the island. The aims of this study are (1) to add new information on bat blood parasites in eastern Madagascar, and (2) to highlight biotic and abiotic variables driving prevalence across the island. Methods Fieldworks were undertaken from 2014 to 2016 in four sites in the eastern portion of Madagascar to capture bats and collect biological samples. Morphological and molecular techniques were used to identify the presence of haemosporidian parasites. Further, a MaxEnt modelling was undertaken using data from Polychromophilus melanipherus to identify variables influencing the presence of this parasite Results In total, 222 individual bats belonging to 17 species and seven families were analysed. Polychromophilus infections were identified in two families: Miniopteridae and Vespertilionidae. Molecular data showed that Polychromophilus spp. parasitizing Malagasy bats form a monophyletic group composed of three distinct clades displaying marked host specificity. In addition to P. melanipherus and P. murinus, hosted by Miniopterus spp. and Myotis goudoti, respectively, a novel Polychromophilus lineage was identified from a single individual of Scotophilus robustus. Based on the present study and the literature, different biotic and abiotic factors are shown to influence Polychromophilus infection in bats, which are correlated based on MaxEnt modelling. Conclusions The present study improves current knowledge on Polychromophilus blood parasites infecting Malagasy bats and confirms the existence of a novel Polychromophilus lineage in Scotophilus bats. Additional studies are needed to obtain additional material of this novel lineage to resolve its taxonomic relationship with known members of the genus. Further, the transmission mode of Polychromophilus in bats as well as its potential effect on bat populations should be investigated to complement the results provided by MaxEnt modelling and eventually provide a comprehensive picture of the biology of host-parasite interactions.


2003 ◽  
Vol 60 (2) ◽  
pp. 269-275 ◽  
Author(s):  
Túlio José Mendes Dias ◽  
Wilson Roberto Maluf ◽  
Marcos Ventura Faria ◽  
Joelson André de Freitas ◽  
Luiz Antonio Augusto Gomes ◽  
...  

Post-harvest shelf life of tomato fruit may be increased by deploying mutant alleles which affect the natural ripening process and/or by a favorable genotypic background. Among the several ripening mutant genes, alcobaça (alc) has proved to be highly efficient in increasing shelf life of commercial tomato fruits, especially in heterozygosis, a state at which no limiting deleterious effects upon fruit color occur. The effects of heterozygosity in the alcobaça locus (alc+/alc) on yield and fruit quality traits of tomato hybrids with three genotypic backgrounds. We evaluated three pairs of hybrids obtained from crosses between the near-isogenic pollen source lines Flora-Dade (alc+/alc+) and TOM-559 (alc/alc), and three maternal lines (Stevens, NC-8276 and Piedmont). The six treatments were factorial combinations of two different status in the alc locus (alc+/alc and alc+/alc+) versus three different genotypic backgrounds (maternal lines). Fruits were harvested at the breaker stage of maturation and stored in shelves at 21ºC for 14 days. Yield and fruit quality traits were then evaluated. Regardless of the background, the alc allele in heterozygosis (alc+/alc) did not interfere with the total yield, commercial yield, average mass per fruit, average mass per commercial fruit, fruit shape, or with fruit peduncular scar diameter. The alc+/alc genotype reduced the rate of firmness loss and delayed evolution of the red color of the fruit, thus contributing to an increase of the post-harvest shelf life for all three genotypic backgrounds.


Horticulturae ◽  
2018 ◽  
Vol 4 (3) ◽  
pp. 19 ◽  
Author(s):  
Daniel Chalupowicz ◽  
Sharon Alkalai-Tuvia ◽  
Merav Zaaroor-Presman ◽  
Elazar Fallik

Acorn squash fruits (Cucurbita pepo L.) are very sweet and are an excellent source of nutrients and vitamins. Very little information is available about their optimal storage temperature or how to extend their shelf life. The present goal was to elucidate the best storage temperature of this fruit, and to evaluate hot water rinsing and brushing (HWRB) technology to maintain fruit quality for several months. The optimal storage temperature was found to be 15 °C. However, treating the fruits with HWRB at 54 °C for 15 s and then storing them at 15 °C significantly maintained fruit quality for 3.5 months, as indicated by higher fruit firmness, lower decay incidence, and improved retention of green skin color.


2019 ◽  
Author(s):  
Steven D. Rowland ◽  
Kristina Zumstein ◽  
Hokuto Nakayama ◽  
Zizhang Cheng ◽  
Amber M. Flores ◽  
...  

SummaryCommercial tomato (Solanum lycopersicum) is one of the most widely grown vegetable crops worldwide. Heirloom tomatoes retain extensive genetic diversity and a considerable range of fruit quality and leaf morphological traits.Here the role of leaf morphology was investigated for its impact on fruit quality. Heirloom cultivars were grown in field conditions and BRIX by Yield (BY) and other traits measured over a fourteen-week period. The complex relationships among these morphological and physiological traits were evaluated using PLS-Path Modeling, and a consensus model developed.Photosynthesis contributed strongly to vegetative biomass and sugar content of fruits but had a negative impact on yield. Conversely leaf shape, specifically rounder leaves, had a strong positive impact on both fruit sugar content and yield. Cultivars such as Stupice and Glacier, with very round leaves, had the highest performance in both fruit sugar and yield. Our model accurately predicted BY for two commercial cultivars using leaf shape data as input.This study revealed the importance of leaf shape to fruit quality in tomato, with rounder leaves having significantly improved fruit quality. This correlation was maintained across a range of diverse genetic backgrounds and shows the importance of leaf morphology in tomato crop improvement.


Sign in / Sign up

Export Citation Format

Share Document