scholarly journals Transcriptome Reveals the Dynamic Response Mechanism of Pearl Millet Roots under Drought Stress

Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1988
Author(s):  
Yang Ji ◽  
Xiaowen Lu ◽  
Huan Zhang ◽  
Dan Luo ◽  
Ailing Zhang ◽  
...  

Drought is a major threat to global agricultural production that limits the growth, development and survival rate of plants, leading to tremendous losses in yield. Pearl millet (Cenchrus americanus (L.) Morrone) has an excellent drought tolerance, and is an ideal plant material for studying the drought resistance of cereal crops. The roots are crucial organs of plants that experience drought stress, and the roots can sense and respond to such conditions. In this study, we explored the mechanism of drought tolerance of pearl millet by comparing transcriptomic data under normal conditions and drought treatment at four time points (24 h, 48 h, 96 h, and 144 h) in the roots during the seedling stage. A total of 1297, 2814, 7401, and 14,480 differentially expressed genes (DEGs) were found at 24 h, 48 h, 96 h, and 144 h, respectively. Based on Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses, we found that many DEGs participated in plant hormone-related signaling pathways and the “oxidoreductase activity” pathway. These results should provide a theoretical basis to enhance drought resistance in other plant species.

2013 ◽  
Vol 138 (4) ◽  
pp. 277-282 ◽  
Author(s):  
Kemin Su ◽  
Justin Q. Moss ◽  
Guolong Zhang ◽  
Dennis L. Martin ◽  
Yanqi Wu

Drought stress is a major limiting factor for warm-season turfgrass growth during the summer in the U.S. transition zone. Genotypic variation in drought resistance exists among bermudagrasses (Cynodon sp.), but the mechanisms of drought resistance are poorly understood. Our objectives were to investigate physiological changes in three bermudagrass cultivars under a well-watered condition and drought stress. to determine expression differences in soluble protein and dehydrin of the three cultivars under well-watered and drought stress conditions, and to identify the association between dehydrin proteins and drought tolerance. Grasses included a high drought-resistant cultivar, Celebration, a low drought-resistant cultivar, Premier, and a newly released cultivar, Latitude 36. In both well-watered and drought treatments, ‘Latitude 36’ had the highest visual quality and lower or medium electrolyte leakage among three cultivars. In the drought treatment, 16- and 23-kDa dehydrin proteins were observed in ‘Latitude 36’ but not in ‘Celebration’ or ‘Premier’. Our results indicate that the 16- and 23-kDa dehydrin expressions could be associated with drought tolerance and contribute to drought tolerance in bermudagrass.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ailing Zhang ◽  
Yang Ji ◽  
Min Sun ◽  
Chuang Lin ◽  
Puding Zhou ◽  
...  

Abstract Background Drought is one of the major environmental stresses resulting in a huge reduction in crop growth and biomass production. Pearl millet (Pennisetum glaucum L.) has excellent drought tolerance, and it could be used as a model plant to study drought resistance. The root is a very crucial part of plant that plays important roles in plant growth and development, which makes it a focus of research. Results In this study, we explored the mechanism of drought tolerance of pearl millet by comparing physiological and transcriptomic data under normal condition and drought treatment at three time points (1 h, 3 h and 7 h) in the root during the seedling stage. The relative electrical conductivity went up from 1 h to 7 h in both control and drought treatment groups while the content of malondialdehyde decreased. A total of 2004, 1538 and 605 differentially expressed genes were found at 1 h, 3 h and 7 h respectively and 12 genes showed up-regulation at all time points. Some of these differentially expressed genes were significantly enriched into ‘metabolic processes’, ‘MAPK signaling pathway’ and ‘plant hormone signal transduction’ such as the ABA signal transduction pathway in GO and KEGG enrichment analysis. Conclusions Pearl millet was found to have a quick drought response, which may occur before 1 h that contributes to its tolerance against drought stress. These results can provide a theoretical basis to enhance the drought resistance in other plant species.


2021 ◽  
Author(s):  
Baozhu Li ◽  
Ruonan Fan ◽  
Guiling Sun ◽  
Ting Sun ◽  
Yanting Fan ◽  
...  

Abstract Background and aims As drought threatens the yield and quality of maize (Zea mays L.), it is important to dissect the molecular basis of maize drought tolerance. Flavonoids, participate in the scavenging of oxygen free radicals and alleviate stress-induced oxidative damages. This study aims to dissect the function of flavonoids in the improvement of maize drought tolerance. Methods Using far-infrared imaging screening, we previously isolated a drought overly insensitivity (doi) mutant from an ethyl methanesulfonate (EMS)-mutagenized maize library and designated it as doi57. In this study, we performed a physiological characterization and transcriptome profiling of doi57 in comparison to corresponding wild-type B73 under drought stress. Results Under drought stress, doi57 seedlings displayed lower leaf-surface temperature (LST), faster water loss, and better performance in growth than B73. Transcriptome analysis reveals that key genes involved in flavonoid biosynthesis are enriched among differentially expressed genes in doi57. In line with these results, more flavonols and less hydrogen peroxide (H2O2) were accumulated in guard cells of doi57 than in those of B73 with the decrease of soil water content (SWC). Moreover, the capacity determined from doi57 seedling extracts to scavenge oxygen free radicals was more effective than that of B73 under the drought treatment. Additionally, doi57 seedlings had higher photosynthetic rates, stomatal conductance, transpiration rates, and water use efficiency than B73 exposed to drought stress, resulting in high biomass and greater root/shoot ratios in doi57 mutant plants. Conclusion Flavonoids may facilitate maize seedling drought tolerance by lowering drought-induced oxidative damage as well regulating stomatal movement.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Z. Y. Su ◽  
J. J. Powell ◽  
S. Gao ◽  
M. Zhou ◽  
C. Liu

Abstract Background Fusarium crown rot (FCR) is a chronic disease in cereal production worldwide. The impact of this disease is highly environmentally dependant and significant yield losses occur mainly in drought-affected crops. Results In the study reported here, we evaluated possible relationships between genes conferring FCR resistance and drought tolerance using two approaches. The first approach studied FCR induced differentially expressed genes (DEGs) targeting two barley and one wheat loci against a panel of genes curated from the literature based on known functions in drought tolerance. Of the 149 curated genes, 61.0% were responsive to FCR infection across the three loci. The second approach was a comparison of the global DEGs induced by FCR infection with the global transcriptomic responses under drought in wheat. This analysis found that approximately 48.0% of the DEGs detected one week following drought treatment and 74.4% of the DEGs detected three weeks following drought treatment were also differentially expressed between the susceptible and resistant isolines under FCR infection at one or more timepoints. As for the results from the first approach, the vast majority of common DEGs were downregulated under drought and expressed more highly in the resistant isoline than the sensitive isoline under FCR infection. Conclusions Results from this study suggest that the resistant isoline in wheat was experiencing less drought stress, which could contribute to the stronger defence response than the sensitive isoline. However, most of the genes induced by drought stress in barley were more highly expressed in the susceptible isolines than the resistant isolines under infection, indicating that genes conferring drought tolerance and FCR resistance may interact differently between these two crop species. Nevertheless, the strong relationship between FCR resistance and drought responsiveness provides further evidence indicating the possibility to enhance FCR resistance by manipulating genes conferring drought tolerance.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247181
Author(s):  
Jiguang Li ◽  
Yanlan Wang ◽  
Liqun Wang ◽  
Jianyu Zhu ◽  
Jing Deng ◽  
...  

Drought is one of the most significant abiotic stresses that affects the growth and productivity of crops worldwide. Finger millet [Eleusine coracana (L.) Gaertn.] is a C4 crop with high nutritional value and drought tolerance. However, the drought stress tolerance genetic mechanism of finger millet is largely unknown. In this study, transcriptomic (RNA-seq) and proteomic (iTRAQ) technologies were combined to investigate the finger millet samples treated with drought at different stages to determine drought response mechanism. A total of 80,602 differentially expressed genes (DEGs) and 3,009 differentially expressed proteins (DEPs) were identified in the transcriptomic and proteomic levels, respectively. An integrated analysis, which combined transcriptome and proteome data, revealed the presence of 1,305 DEPs were matched with the corresponding DEGs (named associated DEGs-DEPs) when comparing the control to samples which were treated with 19 days of drought (N1-N2 comparison group), 1,093 DEGs-DEPs between control and samples which underwent rehydration treatment for 36 hours (N1-N3 comparison group) and 607 DEGs-DEPs between samples which were treated with drought for 19 days and samples which underwent rehydration treatment for 36 hours (N2-N3 comparison group). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified 80 DEGs-DEPs in the N1-N2 comparison group, 49 DEGs-DEPs in the N1-N3 comparison group, and 59 DEGs-DEPs in the N2-N3 comparison group, which were associated with drought stress. The DEGs-DEPs which were drought tolerance-related were enriched in hydrolase activity, glycosyl bond formation, oxidoreductase activity, carbohydrate binding and biosynthesis of unsaturated fatty acids. Co-expression network analysis revealed two candidate DEGs-DEPs which were found to be centrally involved in drought stress response. These results suggested that the coordination of the DEGs-DEPs was essential to the enhanced drought tolerance response in the finger millet.


2020 ◽  
Author(s):  
Wei Wang ◽  
Lei Wang ◽  
Ling Wang ◽  
Meilian Tan ◽  
Collins O. Ogutu ◽  
...  

Abstract Background Oil flax (Linum usitatissimum L.) also as known as linseed is one of the most important oil crops in the world. Although linseed was reported to show better tolerance to abiotic stress conditions compared to other oil crops, the molecular mechanisms underlying linseed tolerance to drought stress are largely unknown. Moreover, as a result of climate change, drought dramatically reduces linseed yield and quality, but so far very little is known about how linseed coordinates the drought-resistant genes expression of response to different level of drought stress on the genome-wide level. Results To explore the transcriptional response of linseed to drought stress (DS) and repeated drought stress (RD), we first determined the drought tolerance of different linseed varieties. Then we performed full-length transcriptome sequencing of drought-resistant variety (Z141) and drought-sensitive variety (NY-17) using single-molecule real-time sequencing and RNA-sequencing under drought stress (DS) and repeated drought stress (RD) at the seedling stage. Gene Ontology (GO) enrichment analysis showed that compared with NY-17, the up-regulated genes of Z141 were enriched in more functional pathways related to plant drought tolerance under drought stress. In addition, the number of up-regulated genes in linseed under RD was more 30% than it under DS. In addition, a total of, 4,436 linseed transcription factors were identified, of these, 1,190 genes were responsive to stress treatments. Finally, the expression patterns of proline biosynthesis and DNA repair structural genes were verified by RT- PCR. Conclusions Drought tolerance of Z141 may be related to its specifically up-regulated drought tolerance genes under drought stress. Several variable physiological responses occurred in repeated than in sustained drought treatment. Sum up, this study provides a new perspective to understand the drought adaptability of linseed.


2021 ◽  
Author(s):  
Shuxia Li ◽  
Zhihao Cheng ◽  
Zhibo Li ◽  
Shiman Dong ◽  
Xiaoling Yu ◽  
...  

Abstract Drought stress severely impairs crop yield and is considered a primary threat to food security worldwide. Although the SQUAMOSA promoter binding protein-like 9 (SPL9) gene participates extensively in numerous developmental processes and in plant response to abiotic stimuli, its role and regulatory pathway in cassava (Manihot esculenta) response to the drought condition remain elusive. In the current study, we show that MeSPL9 plays negative roles in drought stress resistance. MeSPL9 expression was strongly repressed by drought treatment. Overexpression of a dominant-negative form of miR156-resistant MeSPL9, rMeSPL9-SRDX, in which a 12-amino acid repressor sequence was fused to rMeSPL9 at the C terminus, conferred drought tolerance without penalizing overall growth. rMeSPL9-SRDX-overexpressing lines not only exhibited increased osmoprotectant metabolites including proline and anthocyanin, but also accumulated more endogenous jasmonic acid (JA) and soluble sugars. Transcriptomic and real-time PCR analysis suggested that differentially expressed genes were involved in sugar or JA biosynthesis, signaling, and metabolism in transgenic cassava under drought conditions. Exogenous application of JA further confirmed that JA conferred improved drought resistance and promoted stomatal closure in cassava leaves. Taken together, our findings suggest that MeSPL9 affects drought resistance by modulating protectant metabolite levels and JA signaling, which have substantial implications for engineering drought tolerant crops.


2006 ◽  
Vol 131 (4) ◽  
pp. 484-490 ◽  
Author(s):  
Michelle DaCosta ◽  
Bingru Huang

Efficient carbon distribution and utilization may enhance drought survival and recovery ability for perennial grasses. The objectives of this study were to examine changes in carbon partitioning and carbohydrate accumulation patterns in shoots and roots of colonial bentgrass (Agrostis capillaris L.), creeping bentgrass (A. stolonifera L.), and velvet bentgrass (A. canina L.) in response to drought and re-watering following drought, and to determine whether species variation in drought tolerance and recuperative potential is related to differences in the patterns of carbon partitioning and accumulation. The experiment consisted of three treatments: 1) well-watered control; 2) drought, irrigation completely withheld for 18 days; and 3) drought recovery, a group of drought-stressed plants were re-watered at the end of the drought treatment (18 days). Drought tolerance and recuperative ability of three species was evaluated by measuring turf quality and leaf relative water content. These parameters indicated that velvet bentgrass was most drought tolerant while colonial bentgrass had highest recuperative ability among the three species. Plants were labeled with 14CO2 to determine carbon partitioning to shoots and roots. Carbohydrate accumulation was assessed by total nonstructural carbohydrate (TNC) content. The proportion of newly photosynthesized 14C partitioned to roots increased at 12 days of drought compared to the pre-stress level, to a greater extent for velvet bentgrass (45%) than for colonial bentgrass (35%) and creeping bentgrass (30%). In general, the proportion of 14C was highest in roots, intermediate in stems, and lowest in leaves at 12 days of drought treatment for all three bentgrass species. As drought duration and severity increased (18 days), 14C partitioning increased more in leaves and stems relative to that in roots for all three species. Stem TNC content was significantly greater for drought-stressed plants of colonial bentgrass and velvet bentgrass compared to their respective well-watered control plants, whereas no differences in stem TNC content were observed between drought-stressed and well-watered creeping bentgrass. Our results suggest that increased carbon partitioning to roots during initial drought stress represented an adaptive response of bentgrass species to short-term drought stress, and increased carbon partitioning and carbohydrate accumulation in stems during prolonged period of drought stress could be beneficial for rapid recovery of turf growth and water status upon re-watering.


2021 ◽  
Author(s):  
Ximei Li ◽  
Yuan Ji ◽  
Yuting Sheng ◽  
Linshan Sheng ◽  
Weiwei Guo ◽  
...  

Abstract It was reported that green leaf volatiles play vital roles in multiple plant biotic and abiotic stresses, however, their functions in drought resistance have not been determined. The present study was to investigate the possible role of (Z)-3-hexeny-1-yl acetate (Z-3-HAC), a kind of green leaf volatile, in alleviating wheat drought stress and the underlying physiological mechanisms governing this effect. Seedlings of a drought-resistant variety were primed with 100 μM Z-3-HAC at the four-leaf stage before drought treatment. Morphological analysis showed that the primed seedlings grew better and possessed higher biomass accumulation in both shoot and root under drought stress. Additionally, exogenous Z-3-HAC significantly increased the total root length, total root surface area, and total root volume of the seedlings under drought stress. Physiological measurements showed that the primed seedlings possessed higher relative water content (RWC), net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm), photochemical activity of PSII (Fv′/Fm′), total chlorophyll content, activities of the antioxidant enzymes, and osmolyte accumulation under drought conditions. Furthermore, relative electrolyte conductivity (REC), intercellular CO2 concentration (Ci), reactive oxygen species (ROS) accumulation, and malondialdehyde (MDA) content were significantly lower than in non-primed seedlings. Lastly, principal component analysis (PCA) indicated that Z-3-HAC protects wheat seedlings against damage from drought stress mainly through antioxidant and osmoregulation systems.


2018 ◽  
Vol 143 (3) ◽  
pp. 207-212
Author(s):  
Jianming Sun ◽  
Yiming Liu ◽  
Xianglin Li ◽  
Bingru Huang

Protein metabolism plays an important role in plant adaptation to drought stress. The objective of this study was to identify drought-responsive proteins associated with differential drought tolerance for a tolerant genotype (RU9) and a sensitive genotype (RU18) of tall fescue (Lolium arundinacea). Plants of both genotypes were grown under well-watered conditions or subjected to drought stress by withholding irrigation for 12 days in a growth chamber controlled at the optimal growth temperatures of 23/18 °C (day/night). Physiological analysis demonstrated that RU9 was relatively more drought tolerant than RU18, as shown by the higher leaf net photosynthetic rate (Pn) and photochemical efficiency at 12 days of drought treatment. Differentially expressed proteins between RU9 and RU18 exposed to drought stress were identified by two-dimensional electrophoresis and mass spectrometry (MS). Several proteins [photosystem I reaction center subunit II, Rubisco small subunit, and Glyceraldehyde-3-phosphate dehydrogenase (GADPH)] in photosynthesis, respiration, or oxidative regulation exhibited higher abundance in RU9 than RU18 under drought stress. These results suggested the critical importance of energy and oxidative metabolism in tall fescue adaptation to drought stress. Those abundant proteins in the drought-tolerant genotype could be used as biomarkers or developed to molecular markers to develop elite drought-tolerant germplasm in tall fescue and other cool-season perennial grass species.


Sign in / Sign up

Export Citation Format

Share Document