scholarly journals Mineralogical and Geotechnical Characterization of the Clay Layers within the Basal Shear Zone of the 1963 Vajont Landslide

Geosciences ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 360
Author(s):  
Alberto Bolla ◽  
Paolo Paronuzzi ◽  
Daniela Pinto ◽  
Davide Lenaz ◽  
Marco Del Fabbro

The 1963 Vajont landslide is a reference example of large rockslides involving clay interbeds emplaced in sedimentary rock masses in correspondence with the basal rupture zone (thinly stratified cherty limestone of the Fonzaso Formation dated to Middle–Upper Jurassic). The basal shear zone of the 1963 Vajont landslide was made up of a chaotic assemblage of displaced rock masses, limestone angular gravel, and spread clay lenses. The mineralogical investigations showed that the clays are characterized by complex assemblages of illite/smectite mixed layers (36–96%) admixed with variable amounts of calcite (4–64%) and quartz (0–6%). The clay layers show highly variable plasticity properties and shear strength characteristics. The samples with a large prevalence of clay mineral content (CM) (CM > 79%) are characterized by low values of the residual friction angle (6.7–14.9°), whereas clay materials characterized by a higher content of granular minerals (calcite and quartz) clearly show greater friction angle values (19.5–26.7°). The high permeability of the limestone angular gravel, which caused a rapid reservoir-induced inflow (1960–1963), together with the low friction angle of the clay layers were responsible for the overall shear strength reduction in correspondence with the basal rupture zone, thus favoring the huge sliding on 9 October 1963.

2021 ◽  
Vol 21 (8) ◽  
pp. 2461-2483
Author(s):  
Christian Zangerl ◽  
Annemarie Schneeberger ◽  
Georg Steiner ◽  
Martin Mergili

Abstract. The Köfels rockslide in the Ötztal Valley (Tyrol, Austria) represents the largest known extremely rapid landslide in metamorphic rock masses in the Alps. Although many hypotheses for the trigger were discussed in the past, until now no scientifically proven trigger factor has been identified. This study provides new data about the (i) pre-failure and failure topography, (ii) failure volume and porosity of the sliding mass, and (iii) numerical models on initial deformation and failure mechanism, as well as shear strength properties of the basal shear zone obtained by back-calculations. Geographic information system (GIS) methods were used to reconstruct the slope topographies before, during and after the event. Comparing the resulting digital terrain models leads to volume estimates of the failure and deposition masses of 3100 and 4000 million m3, respectively, and a sliding mass porosity of 26 %. For the 2D numerical investigation the distinct element method was applied to study the geomechanical characteristics of the initial failure process (i.e. model runs without a basal shear zone) and to determine the shear strength properties of the reconstructed basal shear zone. Based on numerous model runs by varying the block and joint input parameters, the failure process of the rock slope could be plausibly reconstructed; however, the exact geometry of the rockslide, especially in view of thickness, could not be fully reproduced. Our results suggest that both failure of rock blocks and shearing along dipping joints moderately to the east were responsible for the formation or the rockslide. The progressive failure process may have taken place by fracturing and loosening of the rock mass, advancing from shallow to deep-seated zones, especially by the development of internal shear zones, as well as localized domains of increased block failure. The simulations further highlighted the importance of considering the dominant structural features of the rock mass. Considering back-calculations of the strength properties, i.e. the friction angle of the basal shear zone, the results indicated that under no groundwater flow conditions, an exceptionally low friction angle of 21 to 24∘ or below is required to promote failure, depending on how much internal shearing of the sliding mass is allowed. Model runs considering groundwater flow resulted in approximately 6∘ higher back-calculated critical friction angles ranging from 27 to 30∘. Such low friction angles of the basal failure zone are unexpected from a rock mechanical perspective for this strong rock, and groundwater flow, even if high water pressures are assumed, may not be able to trigger this rockslide. In addition, the rock mass properties needed to induce failure in the model runs if no basal shear zone was implemented are significantly lower than those which would be obtained by classical rock mechanical considerations. Additional conditioning and triggering factors such as the impact of earthquakes acting as precursors for progressive rock mass weakening may have been involved in causing this gigantic rockslide.


2020 ◽  
Vol 857 ◽  
pp. 203-211
Author(s):  
Majid Hamed ◽  
Waleed S. Sidik ◽  
Hanifi Canakci ◽  
Fatih Celik ◽  
Romel N. Georgees

This study was undertaken to investigate some specific problems that limit a safe design and construction of structures on problematic soils. An experimental study was carried out to examine the influence of loading rate and moisture content on shear strength of organic soil. Influece of moisture content on interface friction between organic soil and structural materials was also attempted. A commonly used soil in Iraq was prepared at varying moisture contents of 39%, 57% and 75%. The experimental results showed that the increase in water content will decrease the shear stress and the internal friction angle. An increase of the shearing rate was found to decrease the shear stress and internal friction angle for all percetanges of water contents. Further, direct shear tests were carried out to detect the interface shear stress behavior between organic soil and structural materials. The results revealed that the increase in water content was shown to have significant negetavie effects on the interface internal friction and angle shear strength.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yanhui Cheng ◽  
Weijun Yang ◽  
Dongliang He

Structural plane is a key factor in controlling the stability of rock mass engineering. To study the influence of structural plane microscopic parameters on direct shear strength, this paper established the direct shear mechanical model of the structural plane by using the discrete element code PFC2D. From the mesoscopic perspective, the research on the direct shear test for structural plane has been conducted. The bonding strength and friction coefficient of the structural plane are investigated, and the effect of mesoscopic parameters on the shear mechanical behavior of the structural plane has been analyzed. The results show that the internal friction angle φ of the structural plane decreases with the increase of particle contact stiffness ratio. However, the change range of cohesion is small. The internal friction angle decreases first and then increases with the increase of parallel bond stiffness ratio. The influence of particle contact modulus EC on cohesion c is relatively small. The internal friction angle obtained by the direct shear test is larger than that obtained by the triaxial compression test. Parallel bond elastic modulus has a stronger impact on friction angle φ than that on cohesion c. Under the same normal stress conditions, the shear strength of the specimens increases with particle size. The shear strength of the specimen gradually decreases with the increase of the particle size ratio.


Author(s):  
Khelifa Harichane ◽  
Mohamed Ghrici ◽  
Said Kenai

Cohesive soils with a high plasticity index present difficulties in construction operations because they usually contain expansive clay minerals. However, the engineering properties of soils can be improved by different techniques. The aim of this paper is to study the effect of using lime, natural pozzolana or a combination of both lime and natural pozzolana on plasticity, compaction and shear strength of two clayey soils classified as CH and CL according to the unified soil classification system (USCS). The obtained results indicated that for CH class clay soil, the plasticity index decreased significantly for samples stabilized with lime. On the other hand, for the soil classified as CL class clay, a high decrease in the plasticity index value was observed for samples stabilized with natural pozzolana compared to those stabilized with lime. Also, both the cohesion and internal friction angle in lime added samples were demonstrated to increase with time. The combination of lime and natural pozzolana exhibits a significant effect on the enhancement of both the cohesion and  internal friction angle at later stages. The lime-natural pozzolana combination appears to produce higher shear strength parameters than lime or natural pozzolana used alone.


Engineering characterization which are useful for "temperate" zone soils usually fail to predict the field performance of bauxitic soils, because the index tests upon which the characterization are based are not always reproducible for bauxitic soils. Fifteen (15) bauxitic soil of undisturbed and disturbed samples from 3 distinct sites in Kuantan, all derived from basalt parent rock but representing various stages of weathering were subjected to engineering and mineralogic tests. Values for cohesion and friction angles are evaluated. Soils from Semambu has the highest moisture content of 33.27%, the cohesion value is however lower compared to Bukit Goh which has moisture content of 21.74%. Study are further done to discover the relationship with cohesion and friction angles. Thus, by measuring the cohesion and friction angle can evaluate the performance of bauxite shear strength.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Ziwen Wang ◽  
Jifang Du ◽  
Shuaifeng Wu ◽  
Yingqi Wei ◽  
Jianzhang Xiao ◽  
...  

To identify the water softening mechanisms that caused landslides in Panzhihua Airport, China, property and saturation tests of the mudstones extracted from a representative landslide were proposed. In this paper, water saturation tests were carried out on samples of carbonaceous mudstone collected from the east side of the No. 12 landslide at the airport. A number of different analytical techniques and mechanical tests were used to determine changes in chemical composition, mineral assemblages, and mudstone structural characteristics, including shear strength, after the mudstone had been softened. Three kinds of changes caused by water and three mudstone softening stages are proposed. The results show that the water has a significant influence on the properties of the mudstone, so the stability of the mudstone in the watery period is a big threat to the upper structure. A model for water immersion mudstone strength softening is developed. The model incorporates a permeability coefficient, the hydraulic gradient, and time; the model can be used to determine the mudstone’s shear strength and internal friction angle. This study provides a reference for the study of rock softened by water immersion.


2021 ◽  
Author(s):  
Tongqiang Xiong ◽  
Jianlin Li ◽  
Lehua Wang ◽  
Huafeng Deng ◽  
Xiaoliang Xu

Abstract Extreme ice-snow melting in winter affects the infiltration process of snow water on the slope surface significantly, and plays an important role in the deformation stability of landslide. The fluctuation trend of slope stability under ice-snow melting is the same as that of soil volume water content. The deterioration effect of mechanical parameters will directly affect the deformation stability of bank slope. Based on this, the ice-snow melting cycle model test of slope soil was designed and carried out. The results are showed.(1) We were established an ice-snow melting model based on physical process. In the process of ice-snow melting, the soil cohesion and internal friction Angle have obvious deterioration effect .The deterioration of cohesion is obviously larger than that of internal friction Angle. In the early part of the ice-snow melting cycle, the deterioration of shear strength parameters is very obvious. Among them, the deterioration of shear strength parameters caused by the first four ice-snow melting cycles accounted for about 70% of the total deterioration. After the G2/T2 ice-snow melting cycle, the degree of phase deterioration gradually decreases. The deterioration trend of shear parameters of soil samples gradually tends to be gentle. (2) In the ice-snow melting cycle, the inside of the soil samples have micro-cracks, fissures repeatedly opened and closed, gradually developed and converged. The result is that the soil samples change from dense state to loose state where internal cracks develop. The internal damage of soil samples is the fundamental reason for the gradual deterioration of shear strength.(3)We are keep to the relative independence principle of creep model and unsaturated seepage equation. We are studied and improved the parameter solving method of creep model. The modified model is reasonable and effective. The creep trend and main characteristics of the unsaturated soil can be described well. Shear strength deterioration effect and slope reliability analysis under extreme ice-snow melting conditions .It has important reference significance to the protection of extreme snow and ice disaster on the bank slope.


2021 ◽  
Vol 337 ◽  
pp. 01003
Author(s):  
Valteson da Silva Santos ◽  
Allan B.Silva de Medeiros ◽  
Romário S.Amaro da Silva ◽  
Olava F. Santos ◽  
Osvaldo de Freitas Neto ◽  
...  

In the last decades, several engineering works have been developed in the Northeast of Brazil, a region marked by the occurrence of collapsible and expansive soils. This work aimed to characterize and study the behavior of two samples of residual soils collected in the municipality of Salgueiro-PE regarding their collapse potentials and shear strength parameters, in natural and disturbed conditions, evaluating the influence of the applied vertical stresses and the structural arrangement in these properties. The results obtained showed that the two samples analyzed show collapsible behavior, however, the observed potential for collapse was lower after the original structure arrangement was undone. From the direct shear strength tests, the strength parameters of the two soils were obtained, which pointed effective friction angle close to 30° and cohesive intercept close to 0 kPa. The destructuring of the samples did not cause a considerable variation in these parameters. Thus, it was possible to conclude that for these samples the microstructure has a predominant influence on the occurrence of collapsibility, but does not have the same relevance on the shear strength, such that the material’s destructuring can be considered as an effective measure to reduce the potential collapse.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Ruiqian Wu ◽  
Youzhi Tang ◽  
Shaohe Li ◽  
Wei Wang ◽  
Ping Jiang ◽  
...  

In order to probe into one simplified method to predict the shear strength of Shaoxing unsaturated silty clay, the test method combining unsaturated soil consolidation instrument and conventional direct shear instrument is used to study the shear strength, and the method is compared and verified with the results of equal suction direct shear test. The research results show that the soil water characteristic curve fitted by the measured data points and VG model has obvious stage characteristics in the range of 0~38 kPa, 38~910 kPa, and 910~10000 kPa. The shear strength of unsaturated soil measured by consolidation meter combined with conventional direct shear test is in good agreement with that measured by equal suction direct shear test in the range of 0~500 kPa. The results show that the shear strength, total cohesion, and effective internal friction angle of soil increase slightly with the increase of matric suction in the range of 0~38 kPa. When the matric suction increases from 38 kPa to 500 kPa, the shear strength and total cohesion force of the soil have similar stage characteristics with the SWCC, which first increases and then tends to be stable, while the effective internal friction angle changes slightly. Finally, taking the air-entry value as the demarcation point, an improved model of unsaturated shear strength is proposed by analyzing the error value. Compared with the measured value, the absolute value of relative error is basically kept in the range of 5%~10%, which is close to the measured value.


Sign in / Sign up

Export Citation Format

Share Document