scholarly journals Research Progress on Illicium difengpi (Illiciaceae): A Review

Horticulturae ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 19
Author(s):  
Chao Wu ◽  
Huiling Liang ◽  
Beibei Qi ◽  
Baoyu Liu ◽  
Manlian Wang ◽  
...  

Illicium difengpi K.I.B. et K.I.M. is a member of the Illiciaceae family with a yet not fully explored utilization value. To provide references for the systematic understanding of I. difengpi (Illiciaceae), the morphological and structural characteristics, wild resource distribution, chemical compounds, pharmacological effects, utilization, and protective measures of this species are reviewed. We conclude that (i) I. difengpi (Illiciaceae) is an endemic and indigenous medicinal species that has been used to treat rheumatoid arthritis and traumatic injury in China; (ii) I. difengpi (Illiciaceae) can endure various abiotic stresses, especially extreme drought, and thus has scientific value for exploring adaptive mechanisms of tolerance to extreme drought and in the ecological restoration of karst rocky desertification areas; and (iii) the beautiful tree shapes of I. difengpi (Illiciaceae) give it potential ornamental value. However, the wild resources of I. difengpi (Illiciaceae) have rapidly decreased, and there is an urgent need to protect this endangered species to maintain its diversity. Protection measures include the protection of wild germplasm resources, the establishment of an I. difengpi (Illiciaceae) germplasm resource bank, and the development of large-scale ecological planting techniques. In further research, the medicinal and scientific value of I. difengpi (Illiciaceae) should be systematically explored to clarify the plant’s effective pharmaceutical value, clinical applications, mechanisms of drought adaptation, and genetic diversity.

Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 141
Author(s):  
Firoza Akhter ◽  
Maurizio Mazzoleni ◽  
Luigia Brandimarte

In this study, we explore the long-term trends of floodplain population dynamics at different spatial scales in the contiguous United States (U.S.). We exploit different types of datasets from 1790–2010—i.e., decadal spatial distribution for the population density in the US, global floodplains dataset, large-scale data of flood occurrence and damage, and structural and nonstructural flood protection measures for the US. At the national level, we found that the population initially settled down within the floodplains and then spread across its territory over time. At the state level, we observed that flood damages and national protection measures might have contributed to a learning effect, which in turn, shaped the floodplain population dynamics over time. Finally, at the county level, other socio-economic factors such as local flood insurances, economic activities, and socio-political context may predominantly influence the dynamics. Our study shows that different influencing factors affect floodplain population dynamics at different spatial scales. These facts are crucial for a reliable development and implementation of flood risk management planning.


Author(s):  
Bochao Chen ◽  
Ming Liang ◽  
Qingzhao Wu ◽  
Shan Zhu ◽  
Naiqin Zhao ◽  
...  

AbstractThe development of sodium-ion (SIBs) and potassium-ion batteries (PIBs) has increased rapidly because of the abundant resources and cost-effectiveness of Na and K. Antimony (Sb) plays an important role in SIBs and PIBs because of its high theoretical capacity, proper working voltage, and low cost. However, Sb-based anodes have the drawbacks of large volume changes and weak charge transfer during the charge and discharge processes, thus leading to poor cycling and rapid capacity decay. To address such drawbacks, many strategies and a variety of Sb-based materials have been developed in recent years. This review systematically introduces the recent research progress of a variety of Sb-based anodes for SIBs and PIBs from the perspective of composition selection, preparation technologies, structural characteristics, and energy storage behaviors. Moreover, corresponding examples are presented to illustrate the advantages or disadvantages of these anodes. Finally, we summarize the challenges of the development of Sb-based materials for Na/K-ion batteries and propose potential research directions for their further development.


Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 504 ◽  
Author(s):  
Siyi Huang ◽  
Ziyun You ◽  
Yanting Jiang ◽  
Fuxiang Zhang ◽  
Kaiyang Liu ◽  
...  

Owing to their peculiar structural characteristics and potential applications in various fields, the ultrathin MoS2 nanosheets, a typical two-dimensional material, have attracted numerous attentions. In this paper, a hybrid strategy with combination of quenching process and liquid-based exfoliation was employed to fabricate the ultrathin MoS2 nanosheets (MoS2 NS). The obtained MoS2 NS still maintained hexagonal phase (2H-MoS2) and exhibited evident thin layer-structure (1–2 layers) with inconspicuous wrinkle. Besides, the MoS2 NS dispersion showed excellent stability (over 60 days) and high concentration (0.65 ± 0.04 mg mL−1). The MoS2 NS dispersion also displayed evident optical properties, with two characteristic peaks at 615 and 670 nm, and could be quantitatively analyzed with the absorbance at 615 nm in the range of 0.01–0.5 mg mL−1. The adsorption experiments showed that the as-prepared MoS2 NS also exhibited remarkable adsorption performance on the dyes (344.8 and 123.5 mg g−1 of qm for methylene blue and methyl orange, respectively) and heavy metals (185.2, 169.5, and 70.4 mg g−1 of qm for Cd2+, Cu2+, and Ag+). During the adsorption, the main adsorption mechanisms involved the synergism of physical hole-filling effects and electrostatic interactions. This work provided an effective way for the large-scale fabrication of the two-dimensional nanosheets of transition metal dichalcogenides (TMDs) by liquid exfoliation.


2021 ◽  
Author(s):  
Gaston Latessa ◽  
Angela Busse ◽  
Manousos Valyrakis

<p>The prediction of particle motion in a fluid flow environment presents several challenges from the quantification of the forces exerted by the fluid onto the solids -normally with fluctuating behaviour due to turbulence- and the definition of the potential particle entrainment from these actions. An accurate description of these phenomena has many practical applications in local scour definition and to the design of protection measures.</p><p>In the present work, the actions of different flow conditions on sediment particles is investigated with the aim to translate these effects into particle entrainment identification through analytical solid dynamic equations.</p><p>Large Eddy Simulations (LES) are an increasingly practical tool that provide an accurate representation of both the mean flow field and the large-scale turbulent fluctuations. For the present case, the forces exerted by the flow are integrated over the surface of a stationary particle in the streamwise (drag) and vertical (lift) directions, together with the torques around the particle’s centre of mass. These forces are validated against experimental data under the same bed and flow conditions.</p><p>The forces are then compared against threshold values, obtained through theoretical equations of simple motions such as rolling without sliding. Thus, the frequency of entrainment is related to the different flow conditions in good agreement with results from experimental sediment entrainment research.</p><p>A thorough monitoring of the velocity flow field on several locations is carried out to determine the relationships between velocity time series at several locations around the particle and the forces acting on its surface. These results a relevant to determine ideal locations for flow investigation both in numerical and physical experiments.</p><p>Through numerical experiments, a large number of flow conditions were simulated obtaining a full set of actions over a fixed particle sitting on a smooth bed. These actions were translated into potential particle entrainment events and validated against experimental data. Future work will present the coupling of these LES models with Discrete Element Method (DEM) models to verify the entrainment phenomena entirely from a numerical perspective.</p>


1986 ◽  
Vol 163 ◽  
pp. 227-256 ◽  
Author(s):  
F. O. Thomas ◽  
V. W. Goldschmidt

An experimental study of the developing structural characteristics of a two-dimensional jet in an extremely quiet environment was performed. The jet, at an exit Reynolds number of 6000 and with fluctuation intensity under 0.2% at the mouth, was operated within a large anechoic room. Measurements of energy spectra, fluctuation phase angles and two-dimensionality led to the inference of structural patterns in the flow. These patterns are initially characterized by relatively strong symmetric modes exhibiting limited two-dimensionality and oriented parallel to the mouth of the jet. Subsequent downstream evolution led to the formation of an antisymmetric pattern beyond the jet potential core and the associated development of extended structures possessing a definite large lateral inclination. The results of this work suggest a developing large-scale structural pattern more complicated than previously supposed.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012060
Author(s):  
Xiaoyu Yang ◽  
Ling Tong ◽  
Lin Wu ◽  
Baoguo Zhang ◽  
Zhiyuan Liao ◽  
...  

Abstract Silicon nanostructures are attracting growing attention due to their properties and promising application prospects in solar energy conversion and storage devices, thermoelectric devices, lithium-ion batteries, and biosensing technologies. The large-scale and low-cost preparation of silicon nanostructures is critical for silicon-based advanced functional devices commercialization. In this paper, the feasibility and mechanism of silicon nanostructure fabricated by non-metallic carbon catalytic etching, as well as the currently existing problems and future development trend are reviewed.


Sign in / Sign up

Export Citation Format

Share Document