scholarly journals Techno-Economic Analysis of a Process to Convert Methane to Olefins, Featuring a Combined Reformer via the Methanol Intermediate Product

Hydrogen ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 1-27
Author(s):  
Abdulaziz Alturki

The substantial growth in shale-derived natural gas production in the US has caused significant changes in the chemical and petrochemical markets. Ethylene production of ethane and naphtha via steam cracking is one of the most energy- and emission-intensive activities in chemical manufacturing. High operating temperatures, high reaction endothermicity, and complex separation create high energy demands as well as considerable CO2 emissions. In this study, a demonstration of a transformational methane-to-ethylene process that offers lower emissions using energy optimization and a CO2 minimum-emission approach is presented. The comparisons of different reforming processes suggest that the dry reforming of methane has a negative carbon footprint at low syngas ratios of 1 and below, and that additional carbon emissions can be reduced using integrated heating and cooling utilities, resulting in a 99.24 percent decrease in CO2. A process design implemented to convert methane into value-added chemicals with minimum CO2 emissions is developed.

Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3168 ◽  
Author(s):  
Erahman ◽  
Reyseliani ◽  
Purwanto ◽  
Sudibandriyo

The high energy demand and CO2 emissions in the road transport sector in Indonesia are mainly caused by the use of passenger cars. This situation is predicted to continue due to the increase in car ownership. Scenarios are arranged to examine the potential reductions in energy demand and CO2 emissions in comparison with the business as usual (BAU) condition between 2016 and 2050 by controlling car intensity (fuel economy) and activity (vehicle-km). The intensity is controlled through the introduction of new car technologies, while the activity is controlled through the enactment of fuel taxes. This study aims to analyze the energy demand and CO2 emissions of passenger cars in Indonesia not only for a period in the past (2010–2015) but also based on projections through to 2050, by employing a provincially disaggregated bottom-up model. The provincially disaggregated model shows more accurate estimations for passenger car energy demands. The results suggest that energy demand and CO2 emissions in 2050 will be 50 million liter gasoline equivalent (LGE) and 110 million tons of CO2, respectively. The five provinces with the highest CO2 emissions in 2050 are projected to be West Java, Banten, East Java, Central Java, and South Sulawesi. The projected analysis for 2050 shows that new car technology and fuel tax scenarios can reduce energy demand from the BAU condition by 7.72% and 3.18% and CO2 emissions by 15.96% and 3.18%, respectively.


Economies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 54
Author(s):  
Óscar Rodil-Marzábal ◽  
Hugo Campos-Romero

This paper aims to analyze the economic dimension and environmental impact of intra-EU value-added generation linked to global value chains (GVCs) through input-output analysis. For this purpose, information has been collected from TiVA (Trade in Value Added, OECD) and Eora databases for the years 2005 and 2015. From an economic perspective, the results point to a strengthening of the value-added generated within Factory Europe. From an environmental perspective, all EU28 members have reduced their exports-related impacts in intensity-emissions terms, but not all of them in the same degree. An approach to the environmental Kuznets curve (EKC) has also been carried out through a panel data model. The results show a positive impact of the participation in intra-EU value chain (Factory Europe) on CO2 emissions per capita. Further, an inverted U-shaped curve for CO2 emissions is found for the period 2005–15. In this sense, European economies with lower development levels (many Eastern and Southern countries) seem to be still on the rising segment of the curve, while the more developed ones seem to be on the decreasing segment. These results highlight the need to design global monitoring and prevention mechanisms to tackle growing environmental challenges and the need to incorporate specific actions associated with the GVCs activity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tao Ran ◽  
Long Jin ◽  
Ranithri Abeynayake ◽  
Atef Mohamed Saleem ◽  
Xiumin Zhang ◽  
...  

Abstract Background Brewers’ spent grain (BSG) typically contains 20% – 29% crude protein (CP) with high concentrations of glutamine, proline and hydrophobic and non-polar amino acid, making it an ideal material for producing value-added products like bioactive peptides which have antioxidant properties. For this study, protein was extracted from BSG, hydrolyzed with 1% alcalase and flavourzyme, with the generated protein hydrolysates (AlcH and FlaH) showing antioxidant activities. This study evaluated the effects of AlcH and FlaH on gas production, ruminal fermentation characteristics, nutrient disappearance, microbial protein synthesis and microbial community using an artificial rumen system (RUSITEC) fed a high-grain diet. Results As compared to the control of grain only, supplementation of FlaH decreased (P < 0.01) disappearances of dry matter (DM), organic matter (OM), CP and starch, without affecting fibre disappearances; while AlcH had no effect on nutrient disappearance. Neither AlcH nor FlaH affected gas production or VFA profiles, however they increased (P < 0.01) NH3-N and decreased (P < 0.01) H2 production. Supplementation of FlaH decreased (P < 0.01) the percentage of CH4 in total gas and dissolved-CH4 (dCH4) in dissolved gas. Addition of monensin reduced (P < 0.01) disappearance of nutrients, improved fermentation efficiency and reduced CH4 and H2 emissions. Total microbial nitrogen production was decreased (P < 0.05) but the proportion of feed particle associated (FPA) bacteria was increased with FlaH and monensin supplementation. Numbers of OTUs and Shannon diversity indices of FPA microbial community were unaffected by AlcH and FlaH; whereas both indices were reduced (P < 0.05) by monensin. Taxonomic analysis revealed no effect of AlcH and FlaH on the relative abundance (RA) of bacteria at phylum level, whereas monensin reduced (P < 0.05) the RA of Firmicutes and Bacteroidetes and enhanced Proteobacteria. Supplementation of FlaH enhanced (P < 0.05) the RA of genus Prevotella, reduced Selenomonas, Shuttleworthia, Bifidobacterium and Dialister as compared to control; monensin reduced (P < 0.05) RA of genus Prevotella but enhaced Succinivibrio. Conclusions The supplementation of FlaH in high-grain diets may potentially protect CP and starch from ruminal degradation, without adversely affecting fibre degradation and VFA profiles. It also showed promising effects on reducing CH4 production by suppressing H2 production. Protein enzymatic hydrolysates from BSG using flavourzyme showed potential application to high value-added bio-products.


Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 489
Author(s):  
Hilary Y. Liu ◽  
Jenna R. Gale ◽  
Ian J. Reynolds ◽  
John H. Weiss ◽  
Elias Aizenman

Zinc is a highly abundant cation in the brain, essential for cellular functions, including transcription, enzymatic activity, and cell signaling. However, zinc can also trigger injurious cascades in neurons, contributing to the pathology of neurodegenerative diseases. Mitochondria, critical for meeting the high energy demands of the central nervous system (CNS), are a principal target of the deleterious actions of zinc. An increasing body of work suggests that intracellular zinc can, under certain circumstances, contribute to neuronal damage by inhibiting mitochondrial energy processes, including dissipation of the mitochondrial membrane potential (MMP), leading to ATP depletion. Additional consequences of zinc-mediated mitochondrial damage include reactive oxygen species (ROS) generation, mitochondrial permeability transition, and excitotoxic calcium deregulation. Zinc can also induce mitochondrial fission, resulting in mitochondrial fragmentation, as well as inhibition of mitochondrial motility. Here, we review the known mechanisms responsible for the deleterious actions of zinc on the organelle, within the context of neuronal injury associated with neurodegenerative processes. Elucidating the critical contributions of zinc-induced mitochondrial defects to neurotoxicity and neurodegeneration may provide insight into novel therapeutic targets in the clinical setting.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 641
Author(s):  
Vânia Pôjo ◽  
Tânia Tavares ◽  
Francisco Xavier Malcata

One of the main goals of Mankind is to ensure food system sustainability—including management of land, soil, water, and biodiversity. Microalgae accordingly appear as an innovative and scalable alternative source in view of the richness of their chemical profiles. In what concerns lipids in particular, microalgae can synthesize and accumulate significant amounts of fatty acids, a great fraction of which are polyunsaturated; this makes them excellent candidates within the framework of production and exploitation of lipids by various industrial and health sectors, either as bulk products or fine chemicals. Conventional lipid extraction methodologies require previous dehydration of microalgal biomass, which hampers economic feasibility due to the high energy demands thereof. Therefore, extraction of lipids directly from wet biomass would be a plus in this endeavor. Supporting processes and methodologies are still limited, and most approaches are empirical in nature—so a deeper mechanistic elucidation is a must, in order to facilitate rational optimization of the extraction processes. Besides circumventing the current high energy demands by dehydration, an ideal extraction method should be selective, sustainable, efficient, harmless, and feasible for upscale to industrial level. This review presents and discusses several pretreatments incurred in lipid extraction from wet microalga biomass, namely recent developments and integrated processes. Unfortunately, most such developments have been proven at bench-scale only—so demonstration in large facilities is still needed to confirm whether they can turn into competitive alternatives.


2010 ◽  
Vol 35 (1-2) ◽  
pp. 100-106 ◽  
Author(s):  
Mojca Dolinar ◽  
Boris Vidrih ◽  
Lučka Kajfež-Bogataj ◽  
Sašo Medved

2014 ◽  
Vol 104 (5) ◽  
pp. 272-277 ◽  
Author(s):  
Sandile Hlatshwayo ◽  
Michael Spence

This paper examines the underlying structural elements of US growth patterns, pre- and post-crisis. Prior to the recession, the US economy exhibited a defective growth pattern driven by outsized domestic demand. As domestic aggregate demand retreats to more sustainable levels relative to total income, the tradable side of the economy is a catalyst for restoring strong growth. A structural rebalancing is already underway; although it is only a third of the economy, the tradable sector generated more than half of gross gains in value-added since the start of the recovery. However, distributional issues loom on the horizon.


2010 ◽  
Vol 658 ◽  
pp. 73-76
Author(s):  
Yotwadee Hawangchu ◽  
Duangduen Atong ◽  
Viboon Sricharoenchaikul

Glycerol waste is by-product from the manufacturing of biodiesel by transesterification method containing impurities such as fatty acid, alcohol, spent catalyst, soap and water. Conversion of this waste to value added fuel products would not only improve economic of biodiesel production but also reduce environmental impact from this process. In this work, thermal conversion of glycerol waste by microwave that induced the heat required for initiating the reaction was carried out in a fixed bed quartz reactor using silicon carbide as the bed medium for microwave receptor as well as supporter for nickel catalyst. For non-catalytic reaction at 220W (700°C), carbon and hydrogen conversions were 22.89% and 19.59%, respectively. Gas production was 0.12 L/min syngas, 0.07 L/min H2, 0.82 MJ/m3 of LHV, and 1.27 H2/CO. In catalytic test, the highest syngas, H2, and LHV of 0.41 L/min, 0.23 L/min, and 9.18 MJ/m3, respectively, were obtained from 1%Ni/SiC while the highest H2/CO of 2.72 was obtained from 0.5%Ni/SiC. The 1%Ni/SiC test also resulted in the highest conversion of carbon and hydrogen as much as 79.50% and 83.26%, respectively. For comparison between fresh and regenerated catalysts, it was found that fresh catalyst performed significantly better that regenerated one in term of higher total conversion which may due to sodium deposition on spent catalyst surface.


2021 ◽  
Author(s):  
Sviatoslav Iuras ◽  
Samira Ahmad ◽  
Chiara Cavalleri ◽  
Yernur Akashev

Abstract Ukraine ranks the third largest gas reserves in Europe. Gas production is carried out mainly from the Dnieper-Donets Basin (DDB). A gradual decline in reserves is forcing Ukraine to actively search for possible sources to increase reserves by finding bypassed gas intervals in existing wells or exploration of new prospects. This paper describes 3 case studies, where advanced pulsed neutron logging technology has shown exceptional value in gas-bearing layer identification in different scenarios. The logging technology was applied for formation evaluation. The technology is based on the neutron interaction with the minerals and the fluids contained in the pore space. The logging tool combines measurements from multiple detectors and spacing for self-compensated neutron cross-capture section (sigma) and hydrogen index (HI), and the Fast Neutron Cross Section (FNXS) high-energy neutron elastic cross section rock property. Comprehensive capture and inelastic elemental spectroscopy are simultaneously recorded and processed to describe the elemental composition and the matrix properties, reducing the uncertainties related to drilling cuttings analysis, and overall, the petrophysical evaluation combined with other log outputs. The proposed methodology was tested in several wells, both in open hole and behind casing. In the study we present its application in three wells from different fields of the DDB. The log data acquisition and analysis were performed across several sandstone beds and carbonates formation with low porosities (&lt;10%), in various combinations of casing and holes sizes. The results showed the robustness and effectiveness of using the advanced pulsed neutron logging (PNL) technologies in multiple cases: Case Study A: Enabling a standalone cased hole evaluation and highlighting new potential reservoir zones otherwise overlooked due to absence of open hole logs. Case Study B: Finding by-passed hydrocarbon intervals that were missed from log analysis based on conventional open hole logs for current field operator. Case Study C: Identifying gas saturated reservoirs and providing solid lithology identification that previously was questioned from drilling cuttings in an unconventional reservoir.


Sign in / Sign up

Export Citation Format

Share Document