scholarly journals Regolith as Baseline to a Future Space Farm

2021 ◽  
Vol 3 (1) ◽  
pp. 15
Author(s):  
Luigi Giuseppe Duri ◽  
Antonio Giandonato Caporale ◽  
Paola Adamo ◽  
Youssef Rouphael

In the last decade, a great deal of attention has been paid and many resources have been invested in space colonization. Indeed, many space agencies, perhaps most notably NASA (National Aeronautics and Space Administration), have created programs that aim to establish a stable settlement on the Moon (ideally in the next few years), with additional future goals of a conducting the first manned mission to Mars. Bioregenerative Life-Support Systems (BLSS) will play a key role in these endeavors because it is unrealistic and incredibly difficult to provide all of the consumables that are necessary to keep the crew members on these missions alive due high production costs and the amount of planning that is required to ensure that these products maintain their quality. An alternative solution that can reduce the associated costs and that can support delivery can be provided through the implementation of BLSS with in situ resource utilization (ISRU). Specifically, this technology aims to improve the use of the regolith (the “soil” of a planet or a satellite) on the Moon and on Mars and to promote the re-use of the waste materials that are produced either during the journey or while living in these future colonies, such as human excreta and food residues. At present, little research has investigated the feasibility of use of these resources for crop production or the effects of these resources on crop yield and nutritional quality. Our work aims to fill this gap by using regolith simulants that have been mixed at different rates (0%, 30% or 50%) with a monogastric manure that has been sieved to 2 mm as plant growth substrates to evaluate their long-term effects on lettuce (Lactuca sativa L.). No synthetic fertilizers were delivered to the plants during the entire cultivation period, and the specimens were only provided deionized water. Our results show that the germination rate was around 97% under pure simulant conditions, whereas germination was inhibited in the substrates that contained the monogastric manure. Figure 1 shows the effects of monogastric manure, which was demonstrated to improve the fresh yield by 23% and 17% for the 30% and 50% of amendment treatments, respectively, compared to pure simulant.

2010 ◽  
Vol 90 (4) ◽  
pp. 403-420 ◽  
Author(s):  
D. McCartney ◽  
J. Fraser

The need to reduce agricultural input costs while increasing soil fertility has prompted researchers to look for alternative crop production systems that include N fixing crops. Annual legumes can be used in rotations as forages and green manure crops to increase the organic matter and N content of soils and provide soil cover to control erosion and weeds. Despite the benefits of annual legumes, high production costs and scarcity of seed has hindered their use.Key words: Medic, clover, vetch, pea, bean, lentil, forage yield, forage quality


2020 ◽  
Vol 51 (4) ◽  
Author(s):  
Abdullah & Al-Taye

This study was aimed at assessing marketing efficiency in the main sites of meat production of calf fattening fields in the private sector due to the importance of meat, especially red meat, which has essential nutrient for human body growth and high commodity prices depending on the measurement indicators used to suit the nature of the research conducted in calves fattening production fields in Gogjali region- Nineveh  (2018). The basic source data of the study is obtained from sources on the ongoing ground- marketing questionnaire of three levels, the producer, the wholesaler, the retailer and two fields groups of caste random sample. The first group included (100) fields with imported calves class. The second included (51) fields with local calves class. Whereas, according to the production and marketing costs indicator, the average of marketing efficiency (ME1 ) of marketed meat in both groups of claves fattening fields amounted (92.47, 93.39%) respectively for a kilogram which is a sign of high production costs and, according to the marketing margins indicator, the average of marketing efficiency (ME2 ) of marketed meat in both groups of claves fattening fields amounted (86.89,79.13 %) for per kg which is a sign of high marketing margins. Thus the study concluded a high value of marketing efficiency using the first scale with the fattening period time for both groups while marketing efficiency by using the second scale was characterized by the gradual decline in the imported fattening fields and a gradual rise in the local fattening fields.  The study recommends supporting production inputs (fodder, treatment), unifying markets and limiting the    importation of red meat importation  in order to obtain a good production and currency policy by which the production costs could be reduced to the minimum .


Author(s):  
James Lowenberg-DeBoer ◽  
Kit Franklin ◽  
Karl Behrendt ◽  
Richard Godwin

AbstractBy collecting more data at a higher resolution and by creating the capacity to implement detailed crop management, autonomous crop equipment has the potential to revolutionise precision agriculture (PA), but unless farmers find autonomous equipment profitable it is unlikely to be widely adopted. The objective of this study was to identify the potential economic implications of autonomous crop equipment for arable agriculture using a grain-oilseed farm in the United Kingdom as an example. The study is possible because the Hands Free Hectare (HFH) demonstration project at Harper Adams University has produced grain with autonomous equipment since 2017. That practical experience showed the technical feasibility of autonomous grain production and provides parameters for farm-level linear programming (LP) to estimate farm management opportunities when autonomous equipment is available. The study shows that arable crop production with autonomous equipment is technically and economically feasible, allowing medium size farms to approach minimum per unit production cost levels. The ability to achieve minimum production costs at relatively modest farm size means that the pressure to “get big or get out” will diminish. Costs of production that are internationally competitive will mean reduced need for government subsidies and greater independence for farmers. The ability of autonomous equipment to achieve minimum production costs even on small, irregularly shaped fields will improve environmental performance of crop agriculture by reducing pressure to remove hedges, fell infield trees and enlarge fields.


2021 ◽  
Vol 3 (1) ◽  
pp. 19-36
Author(s):  
Tamás Mizik ◽  
Gábor Gyarmati

As Earth’s fossil energy resources are limited, there is a growing need for renewable resources such as biodiesel. That is the reason why the social, economic and environmental impacts of biofuels became an important research topic in the last decade. Depleted stocks of crude oil and the significant level of environmental pollution encourage researchers and professionals to seek and find solutions. The study aims to analyze the economic and sustainability issues of biodiesel production by a systematic literature review. During this process, 53 relevant studies were analyzed out of 13,069 identified articles. Every study agrees that there are several concerns about the first-generation technology; however, further generations cannot be price-competitive at this moment due to the immature technology and high production costs. However, there are promising alternatives, such as wastewater-based microalgae with up to 70% oil content, fat, oils and grease (FOG), when production cost is below 799 USD/gallon, and municipal solid waste-volatile fatty acids technology, where the raw material is free. Proper management of the co-products (mainly glycerol) is essential, especially at the currently low petroleum prices (0.29 USD/L), which can only be handled by the biorefineries. Sustainability is sometimes translated as cost efficiency, but the complex interpretation is becoming more common. Common elements of sustainability are environmental and social, as well as economic, issues.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Leilah Krounbi ◽  
Akio Enders ◽  
John Gaunt ◽  
Margaret Ball ◽  
Johannes Lehmann

AbstractThe conversion of dairy waste with high moisture contents to dry fertilizers may reduce environmental degradation while lowering crop production costs. We converted the solid portion of screw-pressed dairy manure into a sorbent for volatile ammonia (NH3) in the liquid fraction using pyrolysis and pre-treatment with carbon dioxide (CO2). The extractable N in manure biochar exposed to NH3 following CO2 pre-treatment reached 3.36 g N kg−1, 1260-fold greater extractable N than in untreated manure biochar. Ammonia exposure was 142-times more effective in increasing extractable N than immersing manure biochar in the liquid fraction containing dissolved ammonium. Radish and tomato grown in horticultural media with manure biochar treated with CO2 + NH3 promoted up to 35% greater plant growth (dry weight) and 36–83% greater N uptake compared to manure biochar alone. Uptake of N was similar between plants grown with wood biochar exposed to CO2 + NH3, compared to N-equivalent treatments. The available N in dairy waste in New York (NY) state, if pyrolyzed and treated with NH3 + CO2, is equivalent to 11,732–42,232 Mg N year−1, valued at 6–21.5 million USD year−1. Separated dairy manure treated with CO2 + NH3 can offset 23–82% of N fertilizer needs of NY State, while stabilizing both the solid and liquid fraction of manure for reduced environmental pollution.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1197 ◽  
Author(s):  
Warren Blunt ◽  
David Levin ◽  
Nazim Cicek

Microbial polyhydroxyalkanoates (PHAs) are promising biodegradable polymers that may alleviate some of the environmental burden of petroleum-derived polymers. The requirements for carbon substrates and energy for bioreactor operations are major factors contributing to the high production costs and environmental impact of PHAs. Improving the process productivity is an important aspect of cost reduction, which has been attempted using a variety of fed-batch, continuous, and semi-continuous bioreactor systems, with variable results. The purpose of this review is to summarize the bioreactor operations targeting high PHA productivity using pure cultures. The highest volumetric PHA productivity was reported more than 20 years ago for poly(3-hydroxybutryate) (PHB) production from sucrose (5.1 g L−1 h−1). In the time since, similar results have not been achieved on a scale of more than 100 L. More recently, a number fed-batch and semi-continuous (cyclic) bioreactor operation strategies have reported reasonably high productivities (1 g L−1 h−1 to 2 g L−1 h−1) under more realistic conditions for pilot or industrial-scale production, including the utilization of lower-cost waste carbon substrates and atmospheric air as the aeration medium, as well as cultivation under non-sterile conditions. Little development has occurred in the area of fully continuously fed bioreactor systems over the last eight years.


Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 10
Author(s):  
Aryan Rahimi-Midani ◽  
Tae-Jin Choi

Bacterial fruit blotch caused by Acidovorax citrulli is known to be the major threat to cucurbit crop production worldwide. The pathogen can penetrate into seed coat and cause disease symptoms at any stage of plant growth, which results in fruit loss. Two main genotypes (genotype I and II) are reported in A. citrulli, in which genotype II is the main cause of Bacterial Fruit Blotch (BFB) in watermelon and group I is known to be a causal agent of BFB in melon. To date, there are no commercially available cultivars resistant to BFB, and available strategies are not able to completely manage the disease. In this study, we aim to isolate bacteriophages to control BFB. Samples collected from watermelon, melon, and pumpkin were used to isolate bacteriophages. All isolated bacteriophages were tested against 42 strains of A. citrulli, among which two phages with the ability to lyse a greater number of hosts were selected and characterized. Bacteriophage ACP17 from the Myoviridae family, with a head size of 100 ± 5 nm and tail of 150 ± 5 nm, infected 29 strains of A. citrulli mostly belonging to genotype group I, whereas the second isolated bacteriophage, ACPWH from Siphoviridae, with a head size of 60 ± 5 nm and tail of 180 ± 5 nm, infected 39 A. citrulli strains. Genome analysis of both bacteriophages using Next generation Sequencing (NGS) showed that ACP17 and ACPWH have double-stranded DNA with sizes of 156,972 kb and 424,299 kb, respectively. Watermelon seeds coated with ACPWH showed a germination rate of up to 90% in the presence of A. citrulli in contrast to untreated seed, which showed no germination or germinated juveniles with BFB symptoms in the presence of A. citrulli. The results of this study show that the use of bacteriophages of A. citrulli represents a potential biocontrol method for controlling BFB.


2019 ◽  
Vol 6 (01) ◽  
pp. 60-66
Author(s):  
Ari Kurniawati ◽  
Maya Melati ◽  
Sandra Arifin Aziz ◽  
Purwono Purwono

The application of organic fertilizer, especially manures, for crop production has long-term effects for soil nutrients availability and improvement of soil structure. The improvement of soil properties involves interactions of various types of microorganism in the soil. The research aimed to study the effects of different types of manures on the diversity of functional soil microbes and its effects on organic green mustard production. The experiment was conducted at IPB organic research field, Cikarawang, Darmaga, Bogor, from April to June 2015. The experiment used a randomized complete block design with two factors; the first factor was types of manure, i.e. chicken, cow, and goat manures; the second factor was manure rates, i.e. 0 and 10 ton.ha-1, so there were six treatments in total, replicated three times. The results showed that chicken manure application resulted in a higher mustard green yield and soil-P content than application of goat manure. The addition 10 ton.ha-1 of manures increased C-organic, N, K, and C/N ratio in soil significantly, but mustard green production was not affected. The diversity of microbe population of the soil treated with all types of manures was high. The addition 10 ton.ha-1 of manures decreased the total number of microbes, but increased the number of cellulose-degrading microbes. The population of cellulose-degrading and phosphate-solubilizing microbes in the soil applied with cow manure was higher than those applied with the other manures.


2021 ◽  
Vol 940 (1) ◽  
pp. 012089
Author(s):  
H Pribadi ◽  
S Jumiyati ◽  
A Muis ◽  
I K Widnyana ◽  
J Mustabi

Abstract The rate of world population growth gets faster every year, while on the other hand the land available for food production activities is increasingly limited. Efforts to increase income and food crop production by using cocoa farming to support national food security can be done by optimizing of land through crop diversification patterns by planting local tubers under cocoa farming. This research aims to analyze the optimization of land use, revenue and production costs. In addition, analyzing the nutritional content contained in each type of local tubers, namely sweet potato, cassava and taro. The research was conducted in the the buffer zone of Lore Lindu National Park (TNLL), Palolo District, Sigi Regency, Central Sulawesi Province, Indonesia. The results showed that the optimization of land use and revenue was obtained through the diversification pattern of sweet potato and cocoa. Optimization of the costs use occurs in the use of fertilizer production inputs. In addition, sweet potatoes have a higher calorific value, protein and fat compared to cassava and taro. However, the carbohydrate content of cassava is higher than that of sweet potato and taro.


Sign in / Sign up

Export Citation Format

Share Document