scholarly journals Pentraxin 3 Activates JNK Signaling and Regulates the Epithelial-To-Mesenchymal Transition in Renal Fibrosis

2016 ◽  
Vol 40 (5) ◽  
pp. 1029-1038 ◽  
Author(s):  
Tung-Wei Hung ◽  
Jen-Pi Tsai ◽  
Shin-Huey Lin ◽  
Chien-Hsing Lee ◽  
Yi-Hsien Hsieh ◽  
...  

Background/Aims: Tubulointerstitial fibrosis can lead to end-stage renal disease. Pentraxin 3 (PTX3) is an acute phase protein produced by resident and innate immunity cells. We investigated the effect of PTX3 on cultured human proximal tubular epithelial (HK-2) cells and a rat unilateral ureteral obstruction (UUO) model of renal fibrosis. Methods: Gain-of-function experiments were used to examine the effect of recombinant human PTX3 (Rh-PTX3) on HK-2 cells. Cell proliferation (MTT assay) and in vitro cell migration were measured. The levels of PTX3, p-JNK, and EMT markers were measured using immunohistochemistry, RT-PCR, and western blotting in UUO rats and HK-2 cells. Results: HK-2 cells treated with Rh PTX3 did not affect cell viability, but significantly increased cell migration. Moreover, Rh-PTX3 increased the expression of snail, slug, N-cadherin, and vimentin, decreased the expression of E-cadherin, and increased the phosphorylation of JNK. SP600126 (a specific JNK inhibitor) enhanced the effects of Rh-PTX3. Rats with UUO exhibited time-dependent increased levels of PTX3, p-JNK, and vimentin, and decreased expression of E-cadherin. Conclusions: Our results suggest that PTX3 induces cell migration via upregulation of EMT in a JNK-dependent mechanism, and highlight the role of PTX3 in the pathogenesis renal fibrosis.

2019 ◽  
Vol 20 (2) ◽  
pp. 275 ◽  
Author(s):  
Lei Chen ◽  
Qingling He ◽  
Yamin Liu ◽  
Yafei Wu ◽  
Dongsheng Ni ◽  
...  

PPP3CB belongs to the phosphoprotein phosphatases (PPPs) group. Although the majority of the PPP family play important roles in the epithelial-to-mesenchymal transition (EMT) of tumor cells, little is known about the function of PPP3CB in the EMT process. Here, we found PPP3CB had high expression in kidney mesenchymal-like cells compared with kidney epithelial-like cells. Knock-down of PPP3CB downregulated epithelial marker E-cadherin and upregulated mesenchymal marker Vimentin, promoting the transition of cell states from epithelial to mesenchymal and reorganizing the actin cytoskeleton which contributed to cell migration. Conversely, overexpression of PPP3CB reversed EMT and inhibited migration of tumor cells. Besides, in vitro and in vivo experiments indicated that the loss of PPP3CB suppressed the tumor growth. However, the deletion of the phosphatase domain of PPP3CB showed no effect on the expression of E-cadherin, migration, and G401 cell proliferation. Together, we demonstrate that PPP3CB inhibits G401 cell migration through regulating EMT and promotes cell proliferation, which are both associated with the phosphatase activity of PPP3CB.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Maria João Valente ◽  
Susana Rocha ◽  
Susana Coimbra ◽  
Cristina Catarino ◽  
Petronila Rocha-Pereira ◽  
...  

Persistent inflammation in end-stage renal disease (ESRD) patients is known to underlie the progression of chronic kidney disease and to be associated with multiple risk factors including malnutrition, atherosclerosis, and cardiovascular disease (CVD). The acute-phase protein pentraxin 3 (PTX3) has a proven potential as a local inflammatory biomarker, but its clinical utility in ESRD remains unclear. Circulating levels of PTX3 and classical inflammatory mediators, including the clinical prototypical C-reactive protein (CRP), were assessed in 246 ESRD patients on dialysis and analysed in relation to the lipid profile, adipokine levels, and nutritional, cardiac, and renal fibrosis markers. Occurrence of deaths was recorded for the following year. Contrarily to the classical inflammatory markers, PTX3 levels were negatively correlated with nutritional markers and associated with a less atherogenic lipid profile. Levels of the cardiac and renal fibrosis markers and of the oxidized LDL/LDL-C ratio were found to be independent determinants of PTX3 concentration. When comparing inflammatory mediators, the increase in the PTX3 levels was the only predictor of all-cause mortality in dialysis patients in a survival model adjusted to all markers under study, other than the inflammatory ones, besides common confounding factors in dialysis. Data support the clinical applicability of PTX3 as a broader inflammatory biomarker than the classical ones, presenting a close association with inflammation, malnutrition, CVD, and renal fibrosis and a great potential to predict all-cause mortality in dialysis patients. The pleiotropic character of PTX3 may be of clinical relevance, and it could be targeted to ameliorate the high morbidity and mortality associated with ESRD.


Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 773 ◽  
Author(s):  
Solé ◽  
Moliné ◽  
Vidal ◽  
Ordi-Ros ◽  
Cortés-Hernández

For lupus nephritis (LN) management, it is very important to detect fibrosis at an early stage. Urinary exosomal miRNAs profiling can be used as a potential multi-marker phenotyping tool to identify early fibrosis. We isolated and characterised urinary exosomes and cellular pellets from patients with biopsy-proven LN (n = 45) and healthy controls (n = 20). LN chronicity index (CI) correlated with urinary exosomal miR-21, miR-150, and miR-29c (r = 0.565, 0.840, −0.559, respectively). This miRNA profile distinguished low CI from moderate-high CI in LN patients with a high sensitivity and specificity (94.4% and 99.8%). Furthermore, this multimarker panel predicted an increased risk of progression to end-stage renal disease (ESRD). Pathway analysis identified VEGFA and SP1 as common target genes for the three miRNAs. Immunohistochemistry in LN renal biopsies revealed a significant increase of COL1A1 and COL4A1 correlated with renal chronicity. SP1 decreased significantly in the high-CI group (p = 0.002). VEGFA levels showed no differences. In vitro experiments suggest that these miRNA combinations promote renal fibrosis by increasing profibrotic molecules through SP1 and Smad3/TGFβ pathways. In conclusion, a urinary exosomal multimarker panel composed of miR-21, miR-150, and miR-29c provides a non-invasive method to detect early renal fibrosis and predict disease progression in LN.


2019 ◽  
Vol 20 (14) ◽  
pp. 3567 ◽  
Author(s):  
Teresa Seccia ◽  
Brasilina Caroccia ◽  
Maria Piazza ◽  
Gian Paolo Rossi

Accumulating evidence indicates that epithelial-to-mesenchymal transition (EMT), originally described as a key process for organ development and metastasis budding in cancer, plays a key role in the development of renal fibrosis in several diseases, including hypertensive nephroangiosclerosis. We herein reviewed the concept of EMT and its role in renal diseases, with particular focus on hypertensive kidney disease, the second leading cause of end-stage renal disease after diabetes mellitus. After discussing the pathophysiology of hypertensive nephropathy, the ‘classic’ view of hypertensive nephrosclerosis entailing hyalinization, and sclerosis of interlobular and afferent arterioles, we examined the changes occurring in the glomerulus and tubulo-interstitium and the studies that investigated the role of EMT and its molecular mechanisms in hypertensive kidney disease. Finally, we examined the reasons why some studies failed to provide solid evidence for renal EMT in hypertension.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 356 ◽  
Author(s):  
Haoxiao Zuo ◽  
Marina Trombetta-Lima ◽  
Irene H. Heijink ◽  
Christina H. T. J. van der Veen ◽  
Laura Hesse ◽  
...  

Epithelial-to-mesenchymal transition (EMT) plays a role in chronic obstructive pulmonary diseases (COPD). Cyclic adenosine monophosphate (cAMP) can inhibit transforming growth factor-β1 (TGF-β1) mediated EMT. Although compartmentalization via A-kinase anchoring proteins (AKAPs) is central to cAMP signaling, functional studies regarding their therapeutic value in the lung EMT process are lacking. The human bronchial epithelial cell line (BEAS-2B) and primary human airway epithelial (pHAE) cells were exposed to TGF-β1. Epithelial (E-cadherin, ZO-1) and mesenchymal markers (collagen Ӏ, α-SMA, fibronectin) were analyzed (mRNA, protein). ELISA measured TGF-β1 release. TGF-β1-sensitive AKAPs Ezrin, AKAP95 and Yotiao were silenced while using siRNA. Cell migration was analyzed by wound healing assay, xCELLigence, Incucyte. Prior to TGF-β1, dibutyryl-cAMP (dbcAMP), fenoterol, rolipram, cilostamide, and forskolin were used to elevate intracellular cAMP. TGF-β1 induced morphological changes, decreased E-cadherin, but increased collagen Ӏ and cell migration, a process that was reversed by the inhibitor of δ/epsilon casein kinase I, PF-670462. TGF-β1 altered (mRNA, protein) expression of Ezrin, AKAP95, and Yotiao. St-Ht31, the AKAP antagonist, decreased E-cadherin (mRNA, protein), but counteracted TGF-β1-induced collagen Ӏ upregulation. Cigarette smoke (CS) increased TGF-β1 release, activated TGF signaling, augmented cell migration, and reduced E-cadherin expression, a process that was blocked by TGF-β1 neutralizing antibody. The silencing of Ezrin, AKAP95, and Yotiao diminished TGF-β1-induced collagen Ӏ expression, as well as TGF-β1-induced cell migration. Fenoterol, rolipram, and cilostamide, in AKAP silenced cells, pointed to distinct cAMP compartments. We conclude that Ezrin, AKAP95, and Yotiao promote TGF-β1-mediated EMT, linked to a TGF-β1 release by CS. AKAP members might define the ability of fenoterol, rolipram, and cilostamide to modulate the EMT process, and they might represent potential relevant targets in the treatment of COPD.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1340 ◽  
Author(s):  
Olaia Martinez-Iglesias ◽  
Alba Casas-Pais ◽  
Raquel Castosa ◽  
Andrea Díaz-Díaz ◽  
Daniel Roca-Lema ◽  
...  

The requirement of the E3 ubiquitin-ligase Hakai for the ubiquitination and subsequent degradation of E-cadherin has been associated with enhanced epithelial-to-mesenchymal transition (EMT), tumour progression and carcinoma metastasis. To date, most of the reported EMT-related inhibitors were not developed for anti-EMT purposes, but indirectly affect EMT. On the other hand, E3 ubiquitin-ligase enzymes have recently emerged as promising therapeutic targets, as their specific inhibition would prevent wider side effects. Given this background, a virtual screening was performed to identify novel specific inhibitors of Hakai, targeted against its phosphotyrosine-binding pocket, where phosphorylated-E-cadherin specifically binds. We selected a candidate inhibitor, Hakin-1, which showed an important effect on Hakai-induced ubiquitination. Hakin-1 also inhibited carcinoma growth and tumour progression both in vitro, in colorectal cancer cell lines, and in vivo, in a tumour xenograft mouse model, without apparent systemic toxicity in mice. Our results show for the first time that a small molecule putatively targeting the E3 ubiquitin-ligase Hakai inhibits Hakai-dependent ubiquitination of E-cadherin, having an impact on the EMT process. This represents an important step forward in a future development of an effective therapeutic drug to prevent or inhibit carcinoma tumour progression.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1381 ◽  
Author(s):  
Manuel Scimeca ◽  
Raffaella Giocondo ◽  
Manuela Montanaro ◽  
Annarita Granaglia ◽  
Rita Bonfiglio ◽  
...  

This study aims to investigate the possible different roles of the BMP-2 variants, cytoplasmic and nuclear variant, in both epithelial to mesenchymal transition and in microcalcifications origin in human breast cancers. To this end, the in situ expression of cytoplasmic and nuclear BMP-2 was associated with the expression of the main epithelial to mesenchymal transition biomarkers (e-cadherin and vimentin) and molecules involved in bone metabolisms (RUNX2, RANKL, SDF-1) by immunohistochemistry. In addition, the expression of cytoplasmic and nuclear BMP-2 was associated with the presence of microcalcifications. Our data showed a significant association among the number of cytoplasmic BMP-2-positive cells and the number of both vimentin (positive association) and e-cadherin (negative association) positive breast cells. Conversely, no associations were found concerning the nuclear BMP-2-positive breast cells. Surprisingly, the opposite result was obtained by analyzing the variants of BMP-2 and both the expression of RANKL and SDF-1 and the presence of microcalcifications. Specifically, the presence of microcalcifications was related to the expression of nuclear BMP-2 variant rather than the cytoplasmic one, as well as a strong association between the number of nuclear BMP-2 and the expression of the main breast osteoblast-like cells (BOLCs) biomarkers. To further corroborate these data, an in vitro experiment for demonstrating the co-expression of nBMP-2 and RANKL or vimentin or SDF-1 in breast cancer cells that acquire the capability to produce microcalcifications was developed. These investigations confirmed the association between the nBMP-2 expression and both RANKL and SDF-1. The data supports the idea that whilst cytoplasmic BMP-2 can be involved in epithelial to mesenchymal transition phenomenon, the nuclear variant is related to the essential mechanisms for the formation of breast microcalcifications. In conclusion, from these experimental and translational perspectives, the complexity of BMP-2 signaling will require a detailed understanding of the involvement of specific BMP-2 variants in breast cancers.


2009 ◽  
Vol 20 (8) ◽  
pp. 2207-2217 ◽  
Author(s):  
Justin M. Drake ◽  
Garth Strohbehn ◽  
Thomas B. Bair ◽  
Jessica G. Moreland ◽  
Michael D. Henry

Metastatic colonization involves cancer cell lodgment or adherence in the microvasculature and subsequent migration of those cells across the endothelium into a secondary organ site. To study this process further, we analyzed transendothelial migration of human PC-3 prostate cancer cells in vitro. We isolated a subpopulation of cells, TEM4-18, that crossed an endothelial barrier more efficiently, but surprisingly, were less invasive than parental PC-3 cells in other contexts in vitro. Importantly, TEM4-18 cells were more aggressive than PC-3 cells in a murine metastatic colonization model. Microarray and FACS analysis of these cells showed that the expression of many genes previously associated with leukocyte trafficking and cancer cell extravasation were either unchanged or down-regulated. Instead, TEM4-18 cells exhibited characteristic molecular markers of an epithelial-to-mesenchymal transition (EMT), including frank loss of E-cadherin expression and up-regulation of the E-cadherin repressor ZEB1. Silencing ZEB1 in TEM4-18 cells resulted in increased E-cadherin and reduced transendothelial migration. TEM4-18 cells also express N-cadherin, which was found to be necessary, but not sufficient for increased transendothelial migration. Our results extend the role of EMT in metastasis to transendothelial migration and implicate ZEB1 and N-cadherin in this process in prostate cancer cells.


Sign in / Sign up

Export Citation Format

Share Document