scholarly journals Maternal Obesity during Pregnancy Alters Daily Activity and Feeding Cycles, and Hypothalamic Clock Gene Expression in Adult Male Mouse Offspring

2019 ◽  
Vol 20 (21) ◽  
pp. 5408
Author(s):  
Jane K. Cleal ◽  
Kimberley D. Bruce ◽  
Jasmin L. Shearer ◽  
Hugh Thomas ◽  
Jack Plume ◽  
...  

An obesogenic diet adversely affects the endogenous mammalian circadian clock, altering daily activity and metabolism, and resulting in obesity. We investigated whether an obese pregnancy can alter the molecular clock in the offspring hypothalamus, resulting in changes to their activity and feeding rhythms. Female mice were fed a control (C, 7% kcal fat) or high fat diet (HF, 45% kcal fat) before mating and throughout pregnancy. Male offspring were fed the C or HF diet postweaning, resulting in four offspring groups: C/C, C/HF, HF/C, and HF/HF. Daily activity and food intake were monitored, and at 15 weeks of age were killed at six time-points over 24 h. The clock genes Clock, Bmal1, Per2, and Cry2 in the suprachiasmatic nucleus (SCN) and appetite genes Npy and Pomc in the arcuate nucleus (ARC) were measured. Daily activity and feeding cycles in the HF/C, C/HF, and HF/HF offspring were altered, with increased feeding bouts and activity during the day and increased food intake but reduced activity at night. Gene expression patterns and levels of Clock, Bmal1, Per2, and Cry2 in the SCN and Npy and Pomc in the ARC were altered in HF diet-exposed offspring. The altered expression of hypothalamic molecular clock components and appetite genes, together with changes in activity and feeding rhythms, could be contributing to offspring obesity.

2021 ◽  
Author(s):  
Nina Đukanović ◽  
Francesco La Spada ◽  
Yann Emmenegger ◽  
Guy Niederhäuser ◽  
Frédéric Preitner ◽  
...  

Both sleep-wake behavior and circadian rhythms are tightly coupled to energy metabolism and food intake. Altered feeding times in mice are known to entrain clock-gene rhythms in brain and liver and sleep-deprived humans tend to eat more and gain weight. Previous observations in mice showing that sleep deprivation (SD) changes clock-gene expression might thus relate to altered food intake and not to the loss of sleep per se. Whether SD affects food intake in the mouse and how this might affect clock-gene expression is, however, unknown. We therefore quantified i) the cortical expression of the clock genes Per1, Per2, Dbp, and Cry1 in mice that had access to food or not during a 6h SD, and ii) food intake during baseline, SD, and recovery sleep. We found that food deprivation did not modify the SD-incurred clock-gene changes in the cortex. Moreover, we discovered that although food intake during SD did not differ from baseline, mice lost weight and increased food intake during subsequent recovery. We conclude that SD is associated with food deprivation and that the resulting energy deficit might contribute to the effects of SD that are commonly interpreted as a response to sleep loss.


2021 ◽  
Vol 64 (2) ◽  
pp. 457-466
Author(s):  
Qi Han ◽  
Xiaoyun He ◽  
Ran Di ◽  
Mingxing Chu

Abstract. The circadian rhythm is a biological rhythm that is closely related to the rhythmic expression of a series of clock genes. Results from several studies have indicated that clock genes are associated with the estrous cycle in female animals. Until now, the relationship between estrus cycle transition and clock gene expression in reproductive-axis-related tissues has remained unknown in Small-tailed Han (STH) sheep. This study was conducted to analyze the expression patterns of six canonical clock genes (Clock, BMAL1, Per1, Per2, Cry1, and Cry2) in the follicle phase and luteal phase of STH sheep. We found that all six genes were expressed in the brain, cerebellum, hypothalamus, pituitary, ovary, uterus, and oviduct in follicle and luteal phases. The results indicated that Clock expression was significantly higher in the cerebellum, hypothalamus, and uterus of the luteal phase than that of the follicle phase, whereas BMAL1 expression was significantly higher in the hypothalamus of the luteal phase than that of the follicle phase. Per1 expression was significantly higher in the brain, cerebellum, hypothalamus, and pituitary of the luteal phase than that of the follicle phase, and Per2 expression was significantly higher in the hypothalamus, pituitary, and uterus of the luteal phase than that of the follicle phase. Cry1 expression was significantly higher in the brain, cerebellum, and hypothalamus of the luteal phase than that of the follicle phase, whereas Cry2 expression was significantly higher in the pituitary of the luteal phase than that of the follicle phase. The clock gene expression in all tissues was different between follicle and luteal phases, but all clock gene mRNA levels were found to exhibit higher expression among seven tissues in the luteal phase. Our results suggest that estrous cycles may be associated with clock gene expression in the STH sheep. This is the first study to systematically analyze the expression patterns of clock genes of different estrous cycle in ewes, which could form a basis for further studies to develop the relationship between clock genes and the estrous cycle.


2020 ◽  
Author(s):  
Alexander C. West ◽  
Marianne Iversen ◽  
Even H. Jørgensen ◽  
Simen R. Sandve ◽  
David G. Hazlerigg ◽  
...  

AbstractAcross taxa, circadian control of physiology and behavior arises from cell-autonomous oscillations in gene expression, governed by a networks of so-called ‘clock genes’, collectively forming transcription-translation feedback loops. In modern vertebrates, these networks contain multiple copies of clock gene family members, which arose through whole genome duplication (WGD) events during evolutionary history. It remains unclear to what extent multiple copies of clock gene family members are functionally redundant or have allowed for functional diversification. We addressed this problem through an analysis of clock gene expression in the Atlantic salmon, a representative of the salmonids, a group which has undergone at least 4 rounds of WGD since the base of the vertebrate lineage, giving an unusually large complement of clock genes. By comparing expression patterns across multiple tissues, and during development, we present evidence for gene- and tissue-specific divergence in expression patterns, consistent with functional diversification of clock gene duplicates. In contrast to mammals, we found no evidence for coupling between cortisol and circadian gene expression, but cortisol mediated non-circadian regulated expression of a subset of clock genes in the salmon gill was evident. This regulation is linked to changes in gill function necessary for the transition from fresh- to sea-water in anadromous fish. Overall, this analysis emphasises the potential for a richly diversified clock gene network to serve a mixture of circadian and non-circadian functions in vertebrate groups with complex genomes.Author SummaryThe generation of daily (circadian) rhythms in behaviour and physiology depends on the activities of networks of so-called clock genes. In vertebrates, these have become highly complex due to a process known as whole genome duplication, which has occurred repeatedly during evolutionary history, giving rise to additional copies of key elements of the clock gene network. It remains unclear whether this results in functional redundancy, or whether it has permitted new roles for clock genes to emerge. Here, based on studies in the Atlantic salmon, a species with an unusually large complement of clock genes, we present evidence in favour of the latter scenario. We observe marked tissue-specific, and developmentally-dependent differences in the expression patterns of duplicated copies of key clock genes, and we identify a subset of clock genes whose expression is associated with the physiological preparation to migrate to sea, but is independent of circadian regulation. Associated with this, cortisol secretion is uncoupled from circadian organisation, contrasting with the situation in mammals. Our results indicate that whole genome duplication has permitted clock genes to diversify into non-circadian functions, and raise interesting questions about the ubiquity of mammal-like coupling between circadian and endocrine function.


2007 ◽  
Vol 31 (3) ◽  
pp. 441-457 ◽  
Author(s):  
Miroslaw Mackiewicz ◽  
Keith R. Shockley ◽  
Micah A. Romer ◽  
Raymond J. Galante ◽  
John E. Zimmerman ◽  
...  

The function(s) of sleep remains a major unanswered question in biology. We assessed changes in gene expression in the mouse cerebral cortex and hypothalamus following different durations of sleep and periods of sleep deprivation. There were significant differences in gene expression between behavioral states; we identified 3,988 genes in the cerebral cortex and 823 genes in the hypothalamus with altered expression patterns between sleep and sleep deprivation. Changes in the steady-state level of transcripts for various genes are remarkably common during sleep, as 2,090 genes in the cerebral cortex and 409 genes in the hypothalamus were defined as sleep specific and changed (increased or decreased) their expression during sleep. The largest categories of overrepresented genes increasing expression with sleep were those involved in biosynthesis and transport. In both the cerebral cortex and hypothalamus, during sleep there was upregulation of multiple genes encoding various enzymes involved in cholesterol synthesis, as well as proteins for lipid transport. There was also upregulation during sleep of genes involved in synthesis of proteins, heme, and maintenance of vesicle pools, as well as antioxidant enzymes and genes encoding proteins of energy-regulating pathways. We postulate that during sleep there is a rebuilding of multiple key cellular components in preparation for subsequent wakefulness.


Endocrinology ◽  
2016 ◽  
Vol 157 (1) ◽  
pp. 323-335 ◽  
Author(s):  
Bruna Kalil ◽  
Aline B. Ribeiro ◽  
Cristiane M. Leite ◽  
Ernane T. Uchôa ◽  
Ruither O. Carolino ◽  
...  

Abstract In rodents, kisspeptin neurons in the rostral periventricular area of the third ventricle (RP3V) of the preoptic area are considered to provide a major stimulatory input to the GnRH neuronal network that is responsible for triggering the preovulatory LH surge. Noradrenaline (NA) is one of the main modulators of GnRH release, and NA fibers are found in close apposition to kisspeptin neurons in the RP3V. Our objective was to interrogate the role of NA signaling in the kisspeptin control of GnRH secretion during the estradiol induced LH surge in ovariectomized rats, using prazosin, an α1-adrenergic receptor antagonist. In control rats, the estradiol-induced LH surge at 17 hours was associated with a significant increase in GnRH and kisspeptin content in the median eminence with the increase in kisspeptin preceding that of GnRH and LH. Prazosin, administered 5 and 3 hours prior to the predicted time of the LH surge truncated the LH surge and abolished the rise in GnRH and kisspeptin in the median eminence. In the preoptic area, prazosin blocked the increases in Kiss1 gene expression and kisspeptin content in association with a disruption in the expression of the clock genes, Per1 and Bmal1. Together these findings demonstrate for the first time that NA modulates kisspeptin synthesis in the RP3V through the activation of α1-adrenergic receptors prior to the initiation of the LH surge and indicate a potential role of α1-adrenergic signaling in the circadian-controlled pathway timing of the preovulatory LH surge.


2021 ◽  
Vol 12 ◽  
Author(s):  
Charlotte M. Bolton ◽  
Michaël Bekaert ◽  
Mariann Eilertsen ◽  
Jon Vidar Helvik ◽  
Herve Migaud

To better understand the complexity of clock genes in salmonids, a taxon with an additional whole genome duplication, an analysis was performed to identify and classify gene family members (clock, arntl, period, cryptochrome, nr1d, ror, and csnk1). The majority of clock genes, in zebrafish and Northern pike, appeared to be duplicated. In comparison to the 29 clock genes described in zebrafish, 48 clock genes were discovered in salmonid species. There was also evidence of species-specific reciprocal gene losses conserved to the Oncorhynchus sister clade. From the six period genes identified three were highly significantly rhythmic, and circadian in their expression patterns (per1a.1, per1a.2, per1b) and two was significantly rhythmically expressed (per2a, per2b). The transcriptomic study of juvenile Atlantic salmon (parr) brain tissues confirmed gene identification and revealed that there were 2,864 rhythmically expressed genes (p < 0.001), including 1,215 genes with a circadian expression pattern, of which 11 were clock genes. The majority of circadian expressed genes peaked 2 h before and after daylight. These findings provide a foundation for further research into the function of clock genes circadian rhythmicity and the role of an enriched number of clock genes relating to seasonal driven life history in salmonids.


2008 ◽  
Vol 28 (12) ◽  
pp. 4080-4092 ◽  
Author(s):  
Ayumu Nakashima ◽  
Takeshi Kawamoto ◽  
Kiyomasa K. Honda ◽  
Taichi Ueshima ◽  
Mitsuhide Noshiro ◽  
...  

ABSTRACT DEC1 suppresses CLOCK/BMAL1-enhanced promoter activity, but its role in the circadian system of mammals remains unclear. Here we examined the effect of Dec1 overexpression or deficiency on circadian gene expression triggered with 50% serum. Overexpression of Dec1 delayed the phase of clock genes such as Dec1, Dec2, Per1, and Dbp that contain E boxes in their regulatory regions, whereas it had little effect on the circadian phase of Per2 and Cry1 carrying CACGTT E′ boxes. In contrast, Dec1 deficiency advanced the phase of the E-box-containing clock genes but not that of the E′-box-containing clock genes. Accordingly, DEC1 showed strong binding and transrepression on the E box, but not on the E′ box, in chromatin immunoprecipitation, electrophoretic mobility shift, and luciferase reporter assays. Dec1 −/− mice showed behavioral rhythms with slightly but significantly longer circadian periods under conditions of constant darkness and faster reentrainment to a 6-h phase-advanced shift of a light-dark cycle. Knockdown of Dec2 with small interfering RNA advanced the phase of Dec1 and Dbp expression, and double knockdown of Dec1 and Dec2 had much stronger effects on the expression of the E-box-containing clock genes. These findings suggest that DEC1, along with DEC2, plays a role in the finer regulation and robustness of the molecular clock.


2019 ◽  
Vol 87 (3) ◽  
pp. 485-493 ◽  
Author(s):  
Magdalena Zasada ◽  
Anna Madetko-Talowska ◽  
Cecilie Revhaug ◽  
Anne Gro W. Rognlien ◽  
Lars O. Baumbusch ◽  
...  

Abstract Background We aimed to identify global blood and retinal gene expression patterns in murine oxygen-induced retinopathy (OIR), a common model of retinopathy of prematurity, which may allow better understanding of the pathogenesis of this severe ocular prematurity complication and identification of potential blood biomarkers. Methods A total of 120 C57BL/6J mice were randomly divided into an OIR group, in which 7-day-old pups were maintained in 75% oxygen for 5 days, or a control group. RNA was extracted from the whole-blood mononuclear cells and retinal cells on days 12, 17, and 28. Gene expression in the RNA samples was evaluated with mouse gene expression microarrays. Results There were 38, 1370 and 111 genes, the expression of which differed between the OIR and control retinas on days 12, 17, and 28, respectively. Gene expression in the blood mononuclear cells was significantly altered only on day 17. Deptor and Nol4 genes showed reduced expression both in the blood and retinal cells on day 17. Conclusion There are sustained marked changes in the global pattern of gene expression in the OIR mice retinas. An altered expression of Deptor and Nol4 genes in the blood mononuclear cells requires further investigation as they may indicate retinal neovascularization.


2019 ◽  
Vol 51 (3) ◽  
pp. 77-82 ◽  
Author(s):  
Muna T. Canales ◽  
Meaghan Holzworth ◽  
Shahab Bozorgmehri ◽  
Areef Ishani ◽  
I. David Weiner ◽  
...  

Clock gene dysregulation has been shown to underlie various sleep disorders and may lead to negative cardio-metabolic outcomes. However, the association between sleep apnea (SA) and core clock gene expression is unclear. We performed a cross-sectional analysis of 49 Veterans enrolled in a study of SA outcomes in veterans with chronic kidney disease, not selected for SA or sleep complaints. All participants underwent full polysomnography and next morning whole blood collection for clock gene expression. We defined SA as an apnea-hypopnea index ≥15 events/h; nocturnal hypoxemia(NH) was defined as ≥10% of total sleep time spent at <90% oxygen saturation. We used quantitative real-time PCR to compare the relative gene expression of clock genes between those with and without SA or NH. Clock genes studied were Bmal1, Ck1δ, Ck1ε, Clock, Cry1, Cry2, NPAS2, Per1, Per2, Per3, Rev-Erb-α, RORα, and Timeless. Our cohort was 90% male, mean age was 71 yr (SD 11), mean body mass index was 30 kg/m2 (SD 5); 41% had SA, and 27% had NH. Compared with those without SA, Per3 expression was reduced by 35% in SA ( P = 0.027). Compared with those without NH, NPAS2, Per1, and Rev-Erb-α expression was reduced in NH (50.4%, P = 0.027; 28.7%, P = 0.014; 31%, P = 0.040, respectively). There was no statistical difference in expression of the remaining clock genes by SA or NH status. Our findings suggest that SA or related NH and clock gene expression may be interrelated. Future study of 24 h clock gene expression in SA is needed to establish the role of clock gene regulation on the pathway between SA and cardio-metabolic outcomes.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1204-1204
Author(s):  
Lykke Christina Grubach ◽  
Mike Zangenberg ◽  
Hans Beier Ommen ◽  
Anni Aggerholm ◽  
Peter Hokland

Abstract INTRODUCTION: Acute myeloid leukemia (AML) is a heterogeneous disease with varying survival rates depending mostly upon the molecular phenotype of the single leukemic clone. The most powerful predictor for the outcome of the individual patient is the cytogenetic profile at the time of diagnosis, dividing the patients into good, intermediate and adverse prognostic group. However, given that 40–60 percent of patients exhibits a normal karyotype and are assigned to an intermediate prognostic group, identification of biologic parameters, which either alone or in combination, predict disease outcome more precisely are needed. We have previously performed a gene expression profiling study (Grubach et al, Eur J. Hematol. 2008 Apr 10. [Epub ahead of print]) on a series of Polycomb, Hox and Meis genes expressed in hematopoietic cells. AIM: Based on the finding that HOXA4 could be used as a predictor for outcome in AML patients with a normal karyotype, we hypothesized that combining the gene expression of the HOXA4 gene and co-factor MEIS1 might unravel a leukemogenic impact in other cytogenetic prognostic groups (Grimwade et al. Blood. 1998 Oct 1;92(7):2322–33). In addition, given that epigenetic events might contribute to the regulation of these genes, we determined whether promoter hypermethylation of CpG islands in the promoter regions were of relevance to the expression levels of HOXA4 and MEIS1. MATERIALS & METHODS: Diagnosis samples from 248 AML patients were analyzed by RQ-PCR for expression levels of HOXA4 and MEIS1. 157 of these patients were further analyzed for promoter hypermethylation of the same genes by bisulphite treatment of DNA followed by methylation-specific melting curve analysis (MS-MCA). RESULTS: When combining the gene expression levels of HOXA4 with MEIS1 into the three main groups (low HOXA4/low MEIS1, low HOXA4/high MEIS1 and normal-high HOXA4/high MEIS1; (the latter pooled to enable statistical calculations)), clear differences in overall survival were found (Fig. 1). Thus, within the group of patients exhibiting low levels of HOXA4 transcript, those with a high expression of MEIS1 had a significantly worse outcome than those having low MEIS1 expression (p=0.025). Importantly, in a multiparameter regression analysis, the prediction was independent of the cytogenetic grouping, of mutations in NPM1 and FLT3 genes, WBC and age. Given the efficacy of demethylating therapy, we also considered the mechanism of HOXA4 and MEIS1 gene regulation. Thus, when promoter methylation of HOXA4 and MEIS1 in 157 patients was investigated, we found that 15 % of the patients had hypermethylation of the promoter region of MEIS1 and 77% of the patients showed hypermethylation of HOXA4. Importantly, a significant correlation for both of the genes between the expression level and methylation state was observed (MEIS1, p=0.001 and HOXA4, p=0.007). CONCLUSION: The altered expression levels of HOXA4 and MEIS1 in AML reflect, at least partly, an epigenetic regulation by virtue of promoter hypermethylation. The level of transcripts of HOXA4 and MEIS1 seem to contribute to the leukemogenesis in AML and can serve as independent prognostic variables regardless of their cytogenetic and molecular background. Fig. 1. Overall survival of AML patients-stratified by cytogenetics, mutations in NPM1 and FLT3, WBC and age. By combination of HOXA4 and Meis1 expression a significant better survival is linked to those with a low HOXA4/low MEIS1 compared to those with a low HOXA4/high MEIS1 expression. Fig. 1. Overall survival of AML patients-stratified by cytogenetics, mutations in NPM1 and FLT3, WBC and age. By combination of HOXA4 and Meis1 expression a significant better survival is linked to those with a low HOXA4/low MEIS1 compared to those with a low HOXA4/high MEIS1 expression.


Sign in / Sign up

Export Citation Format

Share Document