scholarly journals Analysis of Intracellular Magnesium and Mineral Depositions during Osteogenic Commitment of 3D Cultured Saos2 Cells

2020 ◽  
Vol 21 (7) ◽  
pp. 2368 ◽  
Author(s):  
Giovanna Picone ◽  
Concettina Cappadone ◽  
Alice Pasini ◽  
Joseph Lovecchio ◽  
Marilisa Cortesi ◽  
...  

In this study, we explore the behaviour of intracellular magnesium during bone phenotype modulation in a 3D cell model built to mimic osteogenesis. In addition, we measured the amount of magnesium in the mineral depositions generated during osteogenic induction. A two-fold increase of intracellular magnesium content was found, both at three and seven days from the induction of differentiation. By X-ray microscopy, we characterized the morphology and chemical composition of the mineral depositions secreted by 3D cultured differentiated cells finding a marked co-localization of Mg with P at seven days of differentiation. This is the first experimental evidence on the presence of Mg in the mineral depositions generated during biomineralization, suggesting that Mg incorporation occurs during the bone forming process. In conclusion, this study on the one hand attests to an evident involvement of Mg in the process of cell differentiation, and, on the other hand, indicates that its multifaceted role needs further investigation.

Author(s):  
Fabian Jaeger ◽  
Alessandro Franceschi ◽  
Holger Hoche ◽  
Peter Groche ◽  
Matthias Oechsner

AbstractCold extruded components are characterized by residual stresses, which originate from the experienced manufacturing process. For industrial applications, reproducibility and homogeneity of the final components are key aspects for an optimized quality control. Although striving to obtain identical deformation and surface conditions, fluctuation in the manufacturing parameters and contact shear conditions during the forming process may lead to variations of the spatial residual stress distribution in the final product. This could lead to a dependency of the residual stress measurement results on the relative axial and circumferential position on the sample. An attempt to examine this problem is made by the employment of design of experiments (DoE) methods. A statistical analysis of the residual stress results generated through X-Ray diffraction is performed. Additionally, the ability of cold extrusion processes to generate uniform stress states is analyzed on specimens of austenitic stainless steel 1.4404 and possible correlations with the pre-deformed condition are statistically examined. Moreover, the influence of the coating, consisting of oxalate and a MoS2 based lubricant, on the X-Ray diffraction measurements of the surface is investigated.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 570
Author(s):  
Olga Sánchez ◽  
Manuel Hernández-Vélez

ZnOTe compounds were grown by DC magnetron cosputtering from pure Tellurium (Te) and Zinc (Zn) cathodes in O2/Ar atmosphere. The applied power on the Zn target was constant equal to 100 W, while the one applied on the Te target took two values, i.e., 5 W and 10 W. Thus, two sample series were obtained in which the variable parameter was the distance from the Te targets to the substrate. Sample compositions were determined by Rutherford Backscattering Spectroscopy (RBS) experiments. Structural analysis was done using X-Ray diffraction (XRD) spectrometry and the growth of the hexagonal w-ZnO phase was identified in the XRD spectra. RBS results showed high bulk homogeneity of the samples forming ZnOTe alloys, with variable Te molar fraction (MF) ranging from 0.48–0.6% and from 1.9–3.1% for the sample series obtained at 5 W and 10 W, respectively. The results reflect great differences between the two sample series, particularly from the structural and optical point of view. These experiments point to the possibility of Te doping ZnO with the permanence of intrinsic defects, as well as the possibility of the formation of other Te solid phases when its content increases. The results and appreciable variations in the band gap transitions were detected from Photoluminescence (PL) measurements.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1362
Author(s):  
Joao Augusto Oshiro ◽  
Angelo Lusuardi ◽  
Elena M. Beamud ◽  
Leila Aparecida Chiavacci ◽  
M. Teresa Cuberes

Ureasil-Poly(ethylene oxide) (ureasil-PEO500) and ureasil-Poly(propylene oxide) (u-PPO400) films, unloaded and loaded with dexamethasone acetate (DMA), have been investigated by carrying out atomic force microscopy (AFM), ultrasonic force microscopy (UFM), contact-angle, and drug release experiments. In addition, X-ray diffraction, small angle X-ray scattering, and infrared spectroscopy have provided essential information to understand the films’ structural organization. Our results reveal that while in u-PEO500 DMA occupies sites near the ether oxygen and remains absent from the film surface, in u-PPO400 new crystalline phases are formed when DMA is loaded, which show up as ~30–100 nm in diameter rounded clusters aligned along a well-defined direction, presumably related to the one defined by the characteristic polymer ropes distinguished on the surface of the unloaded u-POP film; occasionally, larger needle-shaped DMA crystals are also observed. UFM reveals that in the unloaded u-PPO matrix the polymer ropes are made up of strands, which in turn consist of aligned ~180 nm in diameter stiffer rounded clusters possibly formed by siloxane-node aggregates; the new crystalline phases may grow in-between the strands when the drug is loaded. The results illustrate the potential of AFM-based procedures, in combination with additional physico-chemical techniques, to picture the nanostructural arrangements in polymer matrices intended for drug delivery.


1975 ◽  
Vol 68 ◽  
pp. 239-241
Author(s):  
John C. Brown ◽  
H. F. Van Beek

SummaryThe importance and difficulties of determining the height of hard X-ray sources in the solar atmosphere, in order to distinguish source models, have been discussed by Brown and McClymont (1974) and also in this Symposium (Brown, 1975; Datlowe, 1975). Theoretical predictions of this height, h, range between and 105 km above the photosphere for different models (Brown and McClymont, 1974; McClymont and Brown, 1974). Equally diverse values have been inferred from observations of synchronous chromospheric EUV bursts (Kane and Donnelly, 1971) on the one hand and from apparently behind-the-limb events (e.g. Datlowe, 1975) on the other.


2014 ◽  
Vol 69 (11-12) ◽  
pp. 1229-1236
Author(s):  
Matthias Wörsching ◽  
Constantin Hoch

Abstract Cesium hydroxide, CsOH, was for the first time characterised on the basis of single-crystal data. The structure is isotypic to the one of the room-temperature modification of NaOH and can be derived from the NaCl structure type thus allowing the comparison of all alkali metal hydroxide structures. Raman spectroscopic investigations show the hydroxide anion to behave almost as a free ion as in the gas phase. The X-ray investigations indicate possible H atom positions.


2011 ◽  
Vol 286 (41) ◽  
pp. 35699-35707 ◽  
Author(s):  
Attila Iliás ◽  
Károly Liliom ◽  
Brigitte Greiderer-Kleinlercher ◽  
Stephan Reitinger ◽  
Günter Lepperdinger

Hyaluronan (HA), a polymeric glycosaminoglycan ubiquitously present in higher animals, is hydrolyzed by hyaluronidases (HAases). Here, we used bee HAase as a model enzyme to study the HA-HAase interaction. Located in close proximity to the active center, a bulky surface loop, which appears to obstruct one end of the substrate binding groove, was found to be functionally involved in HA turnover. To better understand kinetic changes in substrate interaction, binding of high molecular weight HA to catalytically inactive HAase was monitored by means of quartz crystal microbalance technology. Replacement of the delimiting loop by a tetrapeptide interconnection increased the affinity for HA up to 100-fold, with a KD below 1 nm being the highest affinity among HA-binding proteins surveyed so far. The experimental data of HA-HAase interaction were further validated showing best fit to the theoretically proposed sequential two-site model. Besides the one, which had been shown previously in course of x-ray structure determination, a previously unrecognized binding site works in conjunction with an unbinding loop that facilitates liberation of hydrolyzed HA.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1959
Author(s):  
Flora O. Vanoni ◽  
Gregorio P. Milani ◽  
Carlo Agostoni ◽  
Giorgio Treglia ◽  
Pietro B. Faré ◽  
...  

Chronic alcohol-use disorder has been imputed as a possible cause of dietary magnesium depletion. The purpose of this study was to assess the prevalence of hypomagnesemia in chronic alcohol-use disorder, and to provide information on intracellular magnesium and on its renal handling. We carried out a structured literature search up to November 2020, which returned 2719 potentially relevant records. After excluding non-significant records, 25 were retained for the final analysis. The meta-analysis disclosed that both total and ionized circulating magnesium are markedly reduced in chronic alcohol-use disorder. The funnel plot and the Egger’s test did not disclose significant publication bias. The I2-test demonstrated significant statistical heterogeneity between studies. We also found that the skeletal muscle magnesium content is reduced and the kidney’s normal response to hypomagnesemia is blunted. In conclusion, magnesium depletion is common in chronic alcohol-use disorder. Furthermore, the kidney plays a crucial role in the development of magnesium depletion.


2007 ◽  
Vol 336-338 ◽  
pp. 1914-1917
Author(s):  
Lei Yang ◽  
Zhen Yi Zhang ◽  
Xiao Shan Ning ◽  
Guang He Li

In this paper, a novel and highly efficient hydroxyapatite (HA) carrier for cultivating hydrocarbon degradation bacteria (HDB) is introduced. The HA particles synthesized through a sol-gel method and different heat treatments were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and BET method. The microbial amount and activities of HDB cultivated on HA carriers were quantitatively investigated in order to assess their enriching capabilities. The results showed that HA synthesized at 550°C and the one without calcination could enrich HDB 3 and 2 magnitude orders more than the activated carbon, respectively. Mechanisms of bacterial enrichment on HA and activated carbon were also studied, and it is believed that the high bioactivity and the surface morphology of HA were responsible for the efficient reproduction of HDB. It is concluded that HA is a potential candidate to replace the conventionally used activated carbon as a novel carrier applied in the filed of bioremediation for oil contaminated soil.


2004 ◽  
Vol 76 (5) ◽  
pp. 959-964 ◽  
Author(s):  
J. Karolak-Wojciechowska ◽  
A. Fruzinski

Based on our contemporary studies on the structures of biologically active molecules, we focus our attention on the aliphatic chain and its conformation. That flexible spacer definitely influenced the balanced position of all pharmacophoric points in molecules of biological ligands. The one atomic linker and two or three atomic spacers with one heteroatom X =O, S, CH2, NH have been taken into account. The conformational preferences clearly depend on the heteroatom X. In the discussion, we utilize our own X-ray data, computation chemistry methods, population analysis, and statistical data from the Cambridge Structural Database (CSD).


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1906 ◽  
Author(s):  
Yi Li ◽  
Mingzhe Li ◽  
Kai Liu ◽  
Zhuo Li

As the local forming non-uniform of the formed curved surface part with larger bending deformation is the one of common defects, the utilization ratio of metal plate greatly reduces due to this defect, and cost of production is also increasing. In this paper, the differential speed rotation technology of flexible rolling process was proposed firstly to solve this forming defect. The finite element model was established, the reason of the local forming non-uniform was discussed; the effect of differential speed rotation technology on the forming uniform was studied. The results show that: Flexible rolling is a process based on thickness reduction, in this forming process, the thickness reduces sharply near the back end of metal plate, the local forming non-uniform of formed curved surface part is caused during this process; the differential speed rotation technology is applied in flexible rolling, with increasing rotation speed difference between upper and lower roll set, the forming uniformity of the formed curved surface part is greatly improved. The results of numerical simulation are in agreement with the result of forming experiments.


Sign in / Sign up

Export Citation Format

Share Document