scholarly journals Sperm Cryodamage in Ruminants: Understanding the Molecular Changes Induced by the Cryopreservation Process to Optimize Sperm Quality

2020 ◽  
Vol 21 (8) ◽  
pp. 2781 ◽  
Author(s):  
Patricia Peris-Frau ◽  
Ana Josefa Soler ◽  
María Iniesta-Cuerda ◽  
Alicia Martín-Maestro ◽  
Irene Sánchez-Ajofrín ◽  
...  

Sperm cryopreservation represents a powerful tool for livestock breeding. Several efforts have been made to improve the efficiency of sperm cryopreservation in different ruminant species. However, a significant amount of sperm still suffers considerable cryodamage, which may affect sperm quality and fertility. Recently, the use of different “omics” technologies in sperm cryobiology, especially proteomics studies, has led to a better understanding of the molecular modifications induced by sperm cryopreservation, facilitating the identification of different freezability biomarkers and certain proteins that can be added before cryopreservation to enhance sperm cryosurvival. This review provides an updated overview of the molecular mechanisms involved in sperm cryodamage, which are in part responsible for the structural, functional and fertility changes observed in frozen–thawed ruminant sperm. Moreover, the molecular basis of those factors that can affect the sperm freezing resilience of different ruminant species is also discussed as well as the molecular aspects of those novel strategies that have been developed to reduce sperm cryodamage, including new cryoprotectants, antioxidants, proteins, nanoparticles and vitrification.

2021 ◽  
Vol 19 (3) ◽  
pp. 487-511
Author(s):  
Marvin Bryan Salinas ◽  
◽  
Phongsakorn Chuammitri ◽  
Korawan Sringarm ◽  
Sukolrat Boonyayatra ◽  
...  

The recent advances in sperm cryopreservation transcend cryobanking and other assisted reproductive technologies. Since its discovery, cryopreservation has contributed positive impacts on animal breeding as well as in genetic exchange, improvement, and conservation efforts. However, cryoinjury and variabilities in cryopreservation outcomes remain as key challenges to sperm cryobiology. The present work explored the molecular bases for such freezability differences and freezing-thawing injuries in the ruminant sperm. Relevant biomarkers identified in the seminal plasma and the spermatozoa were highlighted, including lipids, proteins, metabolites, transcripts, and genes. Specific molecular mechanisms concerning sperm structures and functions were also examined relative to their association to cryotolerance, and spermiogram or seminogram modifications following cryopreservation procedures. Current conflicts and gaps in the knowledge base on ruminant spermatozoa were also emphasized. Further investigation of these areas using the available breakthrough molecular tools such as omics technologies is therefore proposed to improve, optimize, or even predict the overall quality of frozen-thawed ruminant semen towards reproductive efficiency.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ibrar Muhammad Khan ◽  
Zubing Cao ◽  
Hongyu Liu ◽  
Adnan Khan ◽  
Sajid Ur Rahman ◽  
...  

Sperm cryopreservation is a powerful tool for the livestock breeding program. Several technical attempts have been made to enhance the efficiency of spermatozoa cryopreservation in different farm animal species. However, it is well-recognized that mammalian spermatozoa are susceptible to cryo-injury caused by cryopreservation processes. Moreover, the factors leading to cryo-injuries are complicated, and the cryo-damage mechanism has not been methodically explained until now, which directly influences the quality of frozen–thawed spermatozoa. Currently, the various OMICS technologies in sperm cryo-biology have been conducted, particularly proteomics and transcriptomics studies. It has contributed while exploring the molecular alterations caused by cryopreservation, identification of various freezability markers and specific proteins that could be added to semen diluents before cryopreservation to improve sperm cryo-survival. Therefore, understanding the cryo-injury mechanism of spermatozoa is essential for the optimization of current cryopreservation processes. Recently, the application of newly-emerged proteomics and transcriptomics technologies to study the effects of cryopreservation on sperm is becoming a hotspot. This review detailed an updated overview of OMICS elements involved in sperm cryo-tolerance and freeze-thawed quality. While also detailed a mechanism of sperm cryo-injury and utilizing OMICS technology that assesses the sperm freezability potential biomarkers as well as the accurate classification between the excellent and poor freezer breeding candidate.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1134
Author(s):  
Hao-Qi Wang ◽  
Wei-Di Zhang ◽  
Bao Yuan ◽  
Jia-Bao Zhang

Mammalian reproduction is mainly driven and regulated by the hypothalamic-pituitary-gonadal (HPG) axis. Follicle-stimulating hormone (FSH), which is synthesized and secreted by the anterior pituitary gland, is a key regulator that ultimately affects animal fertility. As a dimeric glycoprotein hormone, the biological specificity of FSH is mainly determined by the β subunit. As research techniques are being continuously innovated, studies are exploring the underlying molecular mechanism regulating the secretion of mammalian FSH. This article will review the current knowledge on the molecular mechanisms and signaling pathways systematically regulating FSH synthesis and will present the latest hypothesis about the nuclear cross-talk among the various endocrine-induced pathways for transcriptional regulation of the FSH β subunit. This article will provide novel ideas and potential targets for the improved use of FSH in livestock breeding and therapeutic development.


2021 ◽  
Vol 6 (2) ◽  
pp. 48
Author(s):  
Elisa Innocenzi ◽  
Ida Cariati ◽  
Emanuela De Domenico ◽  
Erika Tiberi ◽  
Giovanna D’Arcangelo ◽  
...  

Aerobic exercise (AE) is known to produce beneficial effects on brain health by improving plasticity, connectivity, and cognitive functions, but the underlying molecular mechanisms are still limited. Neurexins (Nrxns) are a family of presynaptic cell adhesion molecules that are important in synapsis formation and maturation. In vertebrates, three-neurexin genes (NRXN1, NRXN2, and NRXN3) have been identified, each encoding for α and β neurexins, from two independent promoters. Moreover, each Nrxns gene (1–3) has several alternative exons and produces many splice variants that bind to a large variety of postsynaptic ligands, playing a role in trans-synaptic specification, strength, and plasticity. In this study, we investigated the impact of a continuous progressive (CP) AE program on alternative splicing (AS) of Nrxns on two brain regions: frontal cortex (FC) and hippocampus. We showed that exercise promoted Nrxns1–3 AS at splice site 4 (SS4) both in α and β isoforms, inducing a switch from exon-excluded isoforms (SS4−) to exon-included isoforms (SS4+) in FC but not in hippocampus. Additionally, we showed that the same AE program enhanced the expression level of other genes correlated with synaptic function and plasticity only in FC. Altogether, our findings demonstrated the positive effect of CP AE on FC in inducing molecular changes underlying synaptic plasticity and suggested that FC is possibly a more sensitive structure than hippocampus to show molecular changes.


Author(s):  
Xiang Zhou ◽  
Jixing Guo ◽  
Mingxia Zhang ◽  
Chunxiu Bai ◽  
Zheng Wang ◽  
...  

Abstract Crematogaster rogenhoferi (Hymenoptera: Formicidae), an omnivorous ant, is one of the dominant predatory natural enemies of a soft scale pest, Parasaissetia nigra Nietner (Homoptera: Coccidae), and can effectively control P. nigra populations in rubber forests. Olfaction plays a vital role in the process of predation. However, the information about the molecular mechanism of olfaction-evoked behaviour in C. rogenhoferi is limited. In this study, we conducted antennal transcriptome analysis to identify candidate olfactory genes. We obtained 53,892 unigenes, 16,185 of which were annotated. Based on annotations, we identified 49 unigenes related to chemoreception, including four odourant-binding proteins, three chemosensory proteins, 37 odourant receptors, two odourant ionotropic receptors and three sensory neuron membrane proteins. This is the first report on the molecular basis of the chemosensory system of C. rogenhoferi. The findings provide a basis for elucidating the molecular mechanisms of the olfactory-related behaviours of C. rogenhoferi, which would facilitate a better application of C. rogenhoferi as a biological control agent.


2015 ◽  
Vol 75 (3) ◽  
pp. 662-669 ◽  
Author(s):  
EG Sanches ◽  
IR Oliveira ◽  
PCS Serralheiro ◽  
VR Cerqueira

AbstractThis study aims developing and evaluate a protocol of semen cryopreservation of the lane snapper Lutjanus synagris. Firstly, sperm motility rate, motility time, density and spermatocrit were appraised to characterize the sperm quality of the lane snapper. The effect of three extenders with distinct ionic compositions and pH values combined with seven concentrations of cryoprotector dimethylsulfoxide (0; 2.5; 5.0; 7.5; 10.0; 12.5 e 15.0%), five cooling rates (110, 90, 60, 45 e 30°C –min), nine equilibration time (1; 2,5; 5; 10; 15; 20; 25; 30 e 60 minutes) e five dilutions ratio (1:1; 1:3; 1:6; 1:10 e 1:20) on the sperm motility rate and motility time were analyzed. Fertilization test was accomplished to evaluate the viability of the cryopreserved sperm. The higher sperm motility rate and motility time (P<0.05) was achieved by combining extender with pH 8.2 with 10% concentration of dimethylsulfoxide and cooling rate 60°C –min, 1 minute of equilibration time and 1:3 (v/v) dilution ratio. The use of cryopreserved sperm presented fertilization rates >60% validating the present protocol for lane snapper. The cryoconserved sperm of lane snapper is a viable alternative, being possible to maintain appropriate sperm viability.


2008 ◽  
Vol 3 (4) ◽  
pp. 351-358 ◽  
Author(s):  
Beronda Montgomery

AbstractComplementary chromatic adaptation (CCA) is a light-dependent acclimation process that occurs in cyanobacteria and likely is related to increased fitness of these organisms in natural environments. Although CCA has been studied for over 40 years, significant advances in our understanding of the molecular foundations of CCA are still emerging. In this minireview, I explore recently reported developments that include novel insights into the molecular mechanisms utilized in the photoregulation of pigmentation and the molecular basis of light-dependent changes in cellular morphology, which are central elements of the process of CCA. I also discuss future avenues of study that are expected to lead to additional progress in our understanding of CCA and our general appreciation of light sensing and photomorphogenesis in cyanobacteria.


Author(s):  
Daniel P. Depledge ◽  
Tomohiko Sadaoka ◽  
Werner J. D. Ouwendijk

Primary varicella-zoster virus (VZV) infection causes varicella (chickenpox) and the establishment of a lifelong latent infection in ganglionic neurons. VZV reactivates in about one-third of infected individuals to cause herpes zoster, often accompanied by neurological complications. The restricted host range of VZV and, until recently, the lack of suitable in vitro models to study VZV latency have seriously hampered molecular studies of viral latency. Nevertheless, recent technological advances facilitated a series of exciting studies that resulted in the discovery of a VZV latency-associated transcript (VLT) and have redefined our understanding of VZV latency and factors that initiate reactivation. Together, these findings pave the way for a new era of research that may finally unravel the precise molecular mechanisms that govern latency. In this review, we will summarize the implications of recent discoveries in the VZV latency field from both a virus and host perspective and provide a roadmap for future studies.


2006 ◽  
Vol 5 (2) ◽  
pp. 23-34
Author(s):  
V. V. Novitsky ◽  
N. V. Ryazantseva ◽  
O. B. Zhoukova

The review analyses information from recent literature and results of the authors’ own investigations concerning imbalance of programmed cell death in forming chronic viral infection. Molecular mechanisms of apoptosis modulation of immune cells by persistent viruses are discussed in the article.


Sign in / Sign up

Export Citation Format

Share Document