scholarly journals Changing ALK-TKI-Resistance Mechanisms in Rebiopsies of ALK-Rearranged NSCLC: ALK- and BRAF-Mutations Followed by Epithelial-Mesenchymal Transition

2020 ◽  
Vol 21 (8) ◽  
pp. 2847 ◽  
Author(s):  
Edyta M. Urbanska ◽  
Jens B. Sørensen ◽  
Linea C. Melchior ◽  
Junia C. Costa ◽  
Eric Santoni-Rugiu

Anaplastic lymphoma-kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) is prone to developing heterogeneous, only partly known mechanisms of resistance to ALK-tyrosine-kinase-inhibitors (ALK-TKIs). We present a case of a 38-year old male, who never smoked with disseminated ALK-rearranged (EML4 (20) – ALK (20) fusion variant 2) lung adenocarcinoma, who received four sequentially different ALK-TKIs and two lines of chemotherapy in-between. We observed significant clinical benefit by the first three ALK-TKIs (Crizotinib, Ceritinib, Alectinib) and chemotherapy with Pemetrexed, resulting in overall survival over 3 years. Longitudinal assessment of progressions by rebiopsies from hepatic metastases showed different mechanisms of resistance to each ALK-TKI, including secondary ALK-mutations and the downstream p.V600E BRAF-mutation that had not been linked to second-generation ALK-TKIs before. Ultimately, in connection with terminal rapid progression and resistance to Alectinib and Lorlatinib, we identified phenotypical epithelial-mesenchymal transition (EMT) of newly occurred metastatic cells, a phenomenon not previously related to these two ALK-TKIs. This resistance heterogeneity suggests a continuously changing disease state. Sequential use of different generation’s ALK-TKIs and combination therapies may yield prolonged responses with satisfactory quality of life in patients with advanced ALK-positive NSCLC. However, the development of EMT is a major hurdle and may explain rapid disease progression and lack of response to continued ALK-inhibition.

2018 ◽  
Vol 7 (8) ◽  
pp. 207 ◽  
Author(s):  
Hsiao-Chen Chiu ◽  
Meng-Yu Wu ◽  
Chao-Hsu Li ◽  
Su-Cheng Huang ◽  
Giou-Teng Yiang ◽  
...  

Disseminated peritoneal leiomyomatosis (DPL) is a rare condition that is characterized by the presence of multiple subperitoneal or peritoneal smooth muscle nodules of varying sizes on the omentum and peritoneal surfaces, grossly mimicking disseminated carcinoma. DPL usually develops in premenopausal women with a benign course, and it is often found incidentally during abdominal surgery. Malignant transformation is a rare clinical course of DPL. Only a few studies have focused on DPL transformation into a leiomyosarcoma. Herein, we describe the case of a 61-year-old woman with a history of recurrent leiomyoma of the uterus who presented with intermittent progressive abdominal pain. The imaging study revealed a huge heterogeneous density mass in the pelvic region with pulmonary and hepatic metastases. Exploratory laparotomy and debulking surgery were performed, and showed the coexistence of DPL and leiomyosarcoma. She died approximately one month after the diagnosis because of rapid progression of pleural effusion due to malignancy. This case highlights the clinical features of DPL and its malignant transformation and metastasis so physicians can make an early diagnosis and provide timely management.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2022
Author(s):  
Francesca Iommelli ◽  
Viviana De Rosa ◽  
Cristina Terlizzi ◽  
Rosa Fonti ◽  
Rosa Camerlingo ◽  
...  

Notch1 plays a key role in epithelial-mesenchymal transition (EMT) and in the maintenance of cancer stem cells. In the present study we tested whether high levels of activated Notch1 in oncogene-driven NSCLC can induce a reversible shift of driver dependence from EGFR to Notch1, and thus causing resistance to EGFR inhibitors. Adherent cells (parental) and tumor spheres (TS) from NSCLC H1975 cells and patient-derived CD133-positive cells were tested for EGFR and Notch1 signaling cascade. The Notch1-dependent modulation of EGFR, NCID, Hes1, p53, and Sp1 were then analyzed in parental cells by binding assays with a Notch1 agonist, DLL4. TS were more resistant than parental cells to EGFR inhibitors. A strong upregulation of Notch1 and a concomitant downregulation of EGFR were observed in TS compared to parental cells. Parental cell exposure to DLL4 showed a dose-dependent decrease of EGFR and a simultaneous increase of NCID, Hes1, p53, and Sp1, along with the dislocation of Sp1 from the EGFR promoter. Furthermore, an enhanced interaction between p53 and Sp1 was observed in TS. In NSCLC cells, high levels of active Notch1 can promote a reversible shift of driver dependence from EGFR to Notch1, leading to resistance to EGFR inhibitors.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Marianne Oulhen ◽  
Patrycja Pawlikowska ◽  
Tala Tayoun ◽  
Marianna Garonzi ◽  
Genny Buson ◽  
...  

AbstractGatekeeper mutations are identified in only 50% of the cases at resistance to Anaplastic Lymphoma Kinase (ALK)-tyrosine kinase inhibitors (TKIs). Circulating tumor cells (CTCs) are relevant tools to identify additional resistance mechanisms and can be sequenced at the single-cell level. Here, we provide in-depth investigation of copy number alteration (CNA) heterogeneity in phenotypically characterized CTCs at resistance to ALK-TKIs in ALK-positive non-small cell lung cancer. Single CTC isolation and phenotyping were performed by DEPArray or fluorescence-activated cell sorting following enrichment and immunofluorescence staining (ALK/cytokeratins/CD45/Hoechst). CNA heterogeneity was evaluated in six ALK-rearranged patients harboring ≥ 10 CTCs/20 mL blood at resistance to 1st and 3rd ALK-TKIs and one presented gatekeeper mutations. Out of 82 CTCs isolated by FACS, 30 (37%) were ALK+/cytokeratins-, 46 (56%) ALK-/cytokeratins+ and 4 (5%) ALK+/cytokeratins+. Sequencing of 43 CTCs showed highly altered CNA profiles and high levels of chromosomal instability (CIN). Half of CTCs displayed a ploidy >2n and 32% experienced whole-genome doubling. Hierarchical clustering showed significant intra-patient and wide inter-patient CTC diversity. Classification of 121 oncogenic drivers revealed the predominant activation of cell cycle and DNA repair pathways and of RTK/RAS and PI3K to a lower frequency. CTCs showed wide CNA heterogeneity and elevated CIN at resistance to ALK-TKIs. The emergence of epithelial ALK-negative CTCs may drive resistance through activation of bypass signaling pathways, while ALK-rearranged CTCs showed epithelial-to-mesenchymal transition characteristics potentially contributing to ALK-TKI resistance. Comprehensive analysis of CTCs could be of great help to clinicians for precision medicine and resistance to ALK-targeted therapies.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jillian Hattaway Luttman ◽  
Ashley Colemon ◽  
Benjamin Mayro ◽  
Ann Marie Pendergast

AbstractThe ABL kinases, ABL1 and ABL2, promote tumor progression and metastasis in various solid tumors. Recent reports have shown that ABL kinases have increased expression and/or activity in solid tumors and that ABL inactivation impairs metastasis. The therapeutic effects of ABL inactivation are due in part to ABL-dependent regulation of diverse cellular processes related to the epithelial to mesenchymal transition and subsequent steps in the metastatic cascade. ABL kinases target multiple signaling pathways required for promoting one or more steps in the metastatic cascade. These findings highlight the potential utility of specific ABL kinase inhibitors as a novel treatment paradigm for patients with advanced metastatic disease.


2021 ◽  
Vol 22 (14) ◽  
pp. 7627
Author(s):  
Tingting Shi ◽  
Asahiro Morishita ◽  
Hideki Kobara ◽  
Tsutomu Masaki

Cholangiocarcinoma (CCA), an aggressive malignancy, is typically diagnosed at an advanced stage. It is associated with dismal 5-year postoperative survival rates, generating an urgent need for prognostic and diagnostic biomarkers. MicroRNAs (miRNAs) are a class of non-coding RNAs that are associated with cancer regulation, including modulation of cell cycle progression, apoptosis, metastasis, angiogenesis, autophagy, therapy resistance, and epithelial–mesenchymal transition. Several miRNAs have been found to be dysregulated in CCA and are associated with CCA-related risk factors. Accumulating studies have indicated that the expression of altered miRNAs could act as oncogenic or suppressor miRNAs in the development and progression of CCA and contribute to clinical diagnosis and prognosis prediction as potential biomarkers. Furthermore, miRNAs and their target genes also contribute to targeted therapy development and aid in the determination of drug resistance mechanisms. This review aims to summarize the roles of miRNAs in the pathogenesis of CCA, their potential use as biomarkers of diagnosis and prognosis, and their utilization as novel therapeutic targets in CCA.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3674 ◽  
Author(s):  
Ralf Hass ◽  
Juliane von der Ohe ◽  
Hendrik Ungefroren

Intratumoral heterogeneity is considered the major cause of drug unresponsiveness in cancer and accumulating evidence implicates non-mutational resistance mechanisms rather than genetic mutations in its development. These non-mutational processes are largely driven by phenotypic plasticity, which is defined as the ability of a cell to reprogram and change its identity (phenotype switching). Tumor cell plasticity is characterized by the reactivation of developmental programs that are closely correlated with the acquisition of cancer stem cell properties and an enhanced potential for retrodifferentiation or transdifferentiation. A well-studied mechanism of phenotypic plasticity is the epithelial-mesenchymal transition (EMT). Current evidence suggests a complex interplay between EMT, genetic and epigenetic alterations, and clues from the tumor microenvironment in cell reprogramming. A deeper understanding of the connections between stem cell, epithelial–mesenchymal, and tumor-associated reprogramming events is crucial to develop novel therapies that mitigate cell plasticity and minimize the evolution of tumor heterogeneity, and hence drug resistance. Alternatively, vulnerabilities exposed by tumor cells when residing in a plastic or stem-like state may be exploited therapeutically, i.e., by converting them into less aggressive or even postmitotic cells. Tumor cell plasticity thus presents a new paradigm for understanding a cancer’s resistance to therapy and deciphering its underlying mechanisms.


Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1197 ◽  
Author(s):  
Zaman ◽  
Wu ◽  
Bivona

Identifying recurrent somatic genetic alterations of, and dependency on, the kinase BRAF has enabled a “precision medicine” paradigm to diagnose and treat BRAF-driven tumors. Although targeted kinase inhibitors against BRAF are effective in a subset of mutant BRAF tumors, resistance to the therapy inevitably emerges. In this review, we discuss BRAF biology, both in wild-type and mutant settings. We discuss the predominant BRAF mutations and we outline therapeutic strategies to block mutant BRAF and cancer growth. We highlight common mechanistic themes that underpin different classes of resistance mechanisms against BRAF-targeted therapies and discuss tumor heterogeneity and co-occurring molecular alterations as a potential source of therapy resistance. We outline promising therapy approaches to overcome these barriers to the long-term control of BRAF-driven tumors and emphasize how an extensive understanding of these themes can offer more pre-emptive, improved therapeutic strategies.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 6003
Author(s):  
Majd S. Hijjawi ◽  
Reem Fawaz Abutayeh ◽  
Mutasem O. Taha

Aurora-A kinase plays a central role in mitosis, where aberrant activation contributes to cancer by promoting cell cycle progression, genomic instability, epithelial-mesenchymal transition, and cancer stemness. Aurora-A kinase inhibitors have shown encouraging results in clinical trials but have not gained Food and Drug Administration (FDA) approval. An innovative computational workflow named Docking-based Comparative Intermolecular Contacts Analysis (dbCICA) was applied—aiming to identify novel Aurora-A kinase inhibitors—using seventy-nine reported Aurora-A kinase inhibitors to specify the best possible docking settings needed to fit into the active-site binding pocket of Aurora-A kinase crystal structure, in a process that only potent ligands contact critical binding-site spots, distinct from those occupied by less-active ligands. Optimal dbCICA models were transformed into two corresponding pharmacophores. The optimal one, in capturing active hits and discarding inactive ones, validated by receiver operating characteristic analysis, was used as a virtual in-silico search query for screening new molecules from the National Cancer Institute database. A fluorescence resonance energy transfer (FRET)-based assay was used to assess the activity of captured molecules and five promising Aurora-A kinase inhibitors were identified. The activity was next validated using a cell culture anti-proliferative assay (MTT) and revealed a most potent lead 85(NCI 14040) molecule after 72 h of incubation, scoring IC50 values of 3.5–11.0 μM against PANC1 (pancreas), PC-3 (prostate), T-47D and MDA-MB-231 (breast)cancer cells, and showing favorable safety profiles (27.5 μM IC50 on fibroblasts). Our results provide new clues for further development of Aurora-A kinase inhibitors as anticancer molecules.


2021 ◽  
Vol 22 (23) ◽  
pp. 12891
Author(s):  
Inese Briede ◽  
Dainis Balodis ◽  
Janis Gardovskis ◽  
Ilze Strumfa

In global cancer statistics, colorectal carcinoma (CRC) ranks third by incidence and second by mortality, causing 10.0% of new cancer cases and 9.4% of oncological deaths worldwide. Despite the development of screening programs and preventive measures, there are still high numbers of advanced cases. Multiple problems compromise the treatment of metastatic colorectal cancer, one of these being cancer stem cells—a minor fraction of pluripotent, self-renewing malignant cells capable of maintaining steady, low proliferation and exhibiting an intriguing arsenal of treatment resistance mechanisms. Currently, there is an increasing body of evidence for intricate associations between inflammation, epithelial–mesenchymal transition and cancer stem cells. In this review, we focus on inflammation and its role in CRC stemness development through epithelial–mesenchymal transition.


2011 ◽  
Author(s):  
Idoia G. Zubeldia ◽  
Anne-Marie Bleau ◽  
Carmen Gil-Puig ◽  
Fernando Vidal-Vanaclocha ◽  
Alfonso Calvo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document