scholarly journals The Role of Aryl Hydrocarbon Receptor (AhR) in Brain Tumors

2020 ◽  
Vol 21 (8) ◽  
pp. 2863 ◽  
Author(s):  
Maria L. Perepechaeva ◽  
Alevtina Y. Grishanova

Primary brain tumors, both malignant and benign, are diagnosed in adults at an incidence rate of approximately 23 people per 100 thousand. The role of AhR in carcinogenesis has been a subject of debate, given that this protein may act as either an oncogenic protein or a tumor suppressor in different cell types and contexts. Lately, there is growing evidence that aryl hydrocarbon receptor (AhR) plays an important part in the development of brain tumors. The role of AhR in brain tumors is complicated, depending on the type of tumor, on ligands that activate AhR, and other features of the pathological process. In this review, we summarize current knowledge about AhR in relation to brain tumors and provide an overview of AhR’s potential as a therapeutic target.

2005 ◽  
Vol 102 (49) ◽  
pp. 17858-17863 ◽  
Author(s):  
J. A. Walisser ◽  
E. Glover ◽  
K. Pande ◽  
A. L. Liss ◽  
C. A. Bradfield

2019 ◽  
Vol 1 (1) ◽  
pp. H67-H73
Author(s):  
Xuechong Hong ◽  
Wenduo Gu

Vascular remodeling is a complex and dynamic pathological process engaging many different cell types that reside within the vasculature. Mesenchymal stromal/stem cells (MSCs) refer to a heterogeneous cell population with the plasticity to differentiate toward multiple mesodermal lineages. Various types of MSC have been identified within the vascular wall that actively contribute to the vascular remodeling process such as atherosclerosis. With the advances of genetic mouse models, recent findings demonstrated the crucial roles of MSCs in the progression of vascular diseases. This review aims to provide an overview on the current knowledge of the characteristics and behavior of vascular resident MSCs under quiescence and remodeling conditions, which may lead to the development of novel therapeutic approaches for cardiovascular diseases.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Hamza Hanieh

The immune system is regulated by distinct signaling pathways that control the development and function of the immune cells. Accumulating evidence suggest that ligation of aryl hydrocarbon receptor (Ahr), an environmentally responsive transcription factor, results in multiple cross talks that are capable of modulating these pathways and their downstream responsive genes. Most of the immune cells respond to such modulation, and many inflammatory response-related genes contain multiple xenobiotic-responsive elements (XREs) boxes upstream. Active research efforts have investigated the physiological role of Ahr in inflammation and autoimmunity using different animal models. Recently formed paradigm has shown that activation of Ahr by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 3,3′-diindolylmethane (DIM) prompts the differentiation of CD4+Foxp3+regulatory T cells (Tregs) and inhibits T helper (Th)-17 suggesting that Ahr is an innovative therapeutic strategy for autoimmune inflammation. These promising findings generate a basis for future clinical practices in humans. This review addresses the current knowledge on the role of Ahr in different immune cell compartments, with a particular focus on inflammation and autoimmunity.


2006 ◽  
Vol 84 (6) ◽  
pp. 832-843 ◽  
Author(s):  
Elena A. Ostrakhovitch ◽  
Shawn S.-C. Li

The signaling lymphocyte-activating molecule (SLAM) family immunoreceptors are expressed in a wide array of immune cells, including both T and B lymphocytes. By virtue of their ability to transduce tyrosine phosphorylation signals through the so-called ITSM (immunoreceptor tyrosine-based switch motif) sequences, they play an important part in regulating both innate and adaptive immune responses. The critical role of the SLAM immunoreceptors in mediating normal immune reactions was highlighted in recent findings that SAP, a SLAM-associated protein, modulates the activities of various immune cells through interactions with different members of the SLAM family expressed in these cells. Importantly, mutations or deletions of the sap gene in humans result in the X-linked lymphoproliferative syndrome. In this review, we summarize current knowledge and survey the latest developments in signal transduction events triggered by the activation of SLAM family receptors in different cell types.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1881 ◽  
Author(s):  
Lorena Perrone ◽  
Tiziana Squillaro ◽  
Filomena Napolitano ◽  
Chiara Terracciano ◽  
Simone Sampaolo ◽  
...  

Autophagy is the major intracellular machinery for degrading proteins, lipids, polysaccharides, and organelles. This cellular process is essential for the maintenance of the correct cellular balance in both physiological and stress conditions. Because of its role in maintaining cellular homeostasis, dysregulation of autophagy leads to various disease manifestations, such as inflammation, metabolic alterations, aging, and neurodegeneration. A common feature of many neurologic and neuromuscular diseases is the alteration of the autophagy-lysosomal pathways. For this reason, autophagy is considered a target for the prevention and/or cure of these diseases. Dietary intake of polyphenols has been demonstrated to prevent/ameliorate several of these diseases. Thus, natural products that can modulate the autophagy machinery are considered a promising therapeutic strategy. In particular, curcumin, a phenolic compound widely used as a dietary supplement, exerts an important effect in modulating autophagy. Herein, we report on the current knowledge concerning the role of curcumin in modulating the autophagy machinery in various neurological and neuromuscular diseases as well as its role in restoring the autophagy molecular mechanism in several cell types that have different effects on the progression of neurological and neuromuscular disorders.


Author(s):  
Andreia Barroso ◽  
João Vitor Mahler ◽  
Pedro Henrique Fonseca-Castro ◽  
Francisco J. Quintana

AbstractThe aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor initially identified as the receptor for dioxin. Almost half a century after its discovery, AHR is now recognized as a receptor for multiple physiological ligands, with important roles in health and disease. In this review, we discuss the role of AHR in the gut–brain axis and its potential value as a therapeutic target for immune-mediated diseases.


2020 ◽  
Vol 22 (1) ◽  
pp. 49
Author(s):  
Nathaniel G. Girer ◽  
Craig R. Tomlinson ◽  
Cornelis J. Elferink

The aryl hydrocarbon receptor (AHR) has been studied for over 40 years, yet our understanding of this ligand-activated transcription factor remains incomplete. Each year, novel findings continually force us to rethink the role of the AHR in mammalian biology. The AHR has historically been studied within the context of potent activation via AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), with a focus on how the AHR mediates TCDD toxicity. Research has subsequently revealed that the AHR is actively involved in distinct physiological processes ranging from the development of the liver and reproductive organs, to immune system function and wound healing. More recently, the AHR was implicated in the regulation of energy metabolism and is currently being investigated as a potential therapeutic target for obesity. In this review, we re-trace the steps through which the early toxicological studies of TCDD led to the conceptual framework for the AHR as a potential therapeutic target in metabolic disease. We additionally discuss the key discoveries that have been made concerning the role of the AHR in energy metabolism, as well as the current and future directions of the field.


2020 ◽  
Vol 21 (18) ◽  
pp. 6777
Author(s):  
Mayur Choudhary ◽  
Goldis Malek

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, which senses environmental, dietary or metabolic signals to mount a transcriptional response, vital in health and disease. As environmental stimuli and metabolic products have been shown to impact the central nervous system (CNS), a burgeoning area of research has been on the role of the AHR in ocular and non-ocular neurodegenerative diseases. Herein, we summarize our current knowledge, of AHR-controlled cellular processes and their impact on regulating pathobiology of select ocular and neurodegenerative diseases. We catalogue animal models generated to study the role of the AHR in tissue homeostasis and disease pathogenesis. Finally, we discuss the potential of targeting the AHR pathway as a therapeutic strategy, in the context of the maladies of the eye and brain.


Reproduction ◽  
2011 ◽  
Vol 142 (2) ◽  
pp. 211-220 ◽  
Author(s):  
Antonina I Frolova ◽  
Kelle H Moley

Facilitative glucose transport molecules (glucose transporters, GLUTs) are responsible for glucose transport across cellular membranes. Of the 14 family members, expression of nine has been reported in the murine uterus and seven in the human uterus. Some studies reveal that adequate glucose uptake and metabolism are essential for the proper differentiation of the uterine endometrium toward a receptive state capable of supporting embryo implantation. However, the mechanistic role of GLUTs in endometrial function remains poorly understood. This review aims to present the current knowledge about GLUT expression in the uterus and distribution among the different cell types within the endometrium. In addition, it analyzes the available data in the context of roles GLUTs may play in normal uterine physiology as well as the pathological conditions of infertility, endometrial cancer, and polycystic ovarian syndrome.


Author(s):  
Antonella Carambia ◽  
Fenja Amrei Schuran

AbstractThe aryl hydrocarbon receptor (AHR) is a ubiquitously expressed ligand-activated transcription factor with multifaceted physiological functions. In the immune system, AHR has been unequivocally identified as a key regulatory factor that can integrate environmental, dietary, or microbial signals into innate and adaptive immune responses. Correspondingly, AHR activity seems to be most important at barrier organs, such as the gut, skin, and lung. The liver is likewise prominently exposed to gut-derived dietary or microbial AHR ligands and, moreover, generates plenty of AHR ligands itself. Yet, surprisingly little is known about the role of AHR in the regulation of hepatic immune responses, which are normally biased towards tolerance, preventing harmful inflammation in response to innocuous stimuli. In this review, we summarize the current knowledge about the role of AHR in hepatic immune responses in the healthy liver as well as in inflammatory liver disease. Moreover, we discuss AHR as a potential therapeutic target in hepatic disorders, including autoimmune liver disease, liver fibrosis, and liver cancer.


Sign in / Sign up

Export Citation Format

Share Document