scholarly journals The Effects of Maternal and Postnatal Dietary Methyl Nutrients on Epigenetic Changes that Lead to Non-Communicable Diseases in Adulthood

2020 ◽  
Vol 21 (9) ◽  
pp. 3290 ◽  
Author(s):  
Raniru S. Randunu ◽  
Robert F. Bertolo

The risk for non-communicable diseases in adulthood can be programmed by early nutrition. This programming is mediated by changes in expression of key genes in various metabolic pathways during development, which persist into adulthood. These developmental modifications of genes are due to epigenetic alterations in DNA methylation patterns. Recent studies have demonstrated that DNA methylation can be affected by maternal or early postnatal diets. Because methyl groups for methylation reactions come from methionine cycle nutrients (i.e., methionine, choline, betaine, folate), deficiency or supplementation of these methyl nutrients can directly change epigenetic regulation of genes permanently. Although many studies have described the early programming of adult diseases by maternal and infant nutrition, this review discusses studies that have associated early dietary methyl nutrient manipulation with direct effects on epigenetic patterns that could lead to chronic diseases in adulthood. The maternal supply of methyl nutrients during gestation and lactation can alter epigenetics, but programming effects vary depending on the timing of dietary intervention, the type of methyl nutrient manipulated, and the tissue responsible for the phenotype. Moreover, the postnatal manipulation of methyl nutrients can program epigenetics, but more research is needed on whether this approach can rescue maternally programmed offspring.

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii202-ii202
Author(s):  
Harmon Khela ◽  
Sweta Sudhir ◽  
Maria Lugo-Fagundo ◽  
Bachchu Lal ◽  
Hernando Lopez-Bertoni ◽  
...  

Abstract Epigenetic alterations such as DNA methylation and dysregulation of non-coding RNAs (e.g. miRNAs) are found in all types of cancer and are thought to play important roles in tumorigenesis. GBM is characterized by small subsets of cells, referred to as glioma stem cells (GSCs), that display stem-like properties implicated in tumor initiation, therapeutic resistance, and recurrence. DNA methylation patterns are altered in GBM and GSCs and are thought to play critical roles in tumor initiation and propagation. DNA methylation is a reversible process catalyzed, in part, by the ten-eleven translocation (TET) family of enzymes. These enzymes function as deoxygenases that catalyze the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Multiple studies found negative correlations between 5hmC levels and glioma grade and loss of 5hmC correlates with poor prognosis of GBM patients. However, the mechanisms leading to the loss of 5hmC in glioma and the role this phenomenon plays in gliomagenesis remains poorly understood. We found that Sox2 expression decreases TET2 expression and its product 5hmC in GSCs and identified miR-10b-5p as a molecular intermediary of this process. We show that miR-10b-5p expression is high in GBM compared to non-tumor in clinical specimens and high levels of this miRNA correlate with poor patient outcome. Expression of transgenic miR-10b-5p enhanced sphere formation capacity of GSCs and the expression of stem cell markers and drivers. Additionally, using a combination of molecular and biochemical endpoints, we show that miR-10b-5p modifies 5hmC levels by regulating TET2 in GSCs. Finally, we show that repression of miR-10b-5p increases 5hmC levels and inhibits tumor propagation in GBM xenograft models. Taken together, these results present a new molecular mechanism that controls 5hmC and the tumor propagating capacity of GSCs and suggests that miR-10b-5p inhibition and other strategies for enhancing TET2 function can be developed to treat GBM.


2018 ◽  
Vol 120 (9) ◽  
pp. 961-976 ◽  
Author(s):  
Khalil ElGendy ◽  
Fiona C. Malcomson ◽  
Jose G. Lara ◽  
David Michael Bradburn ◽  
John C. Mathers

AbstractDNA methylation is a key component of the epigenetic machinery that is responsible for regulating gene expression and, therefore, cell function. Patterns of DNA methylation change during development and ageing, differ between cell types, are altered in multiple diseases and can be modulated by dietary factors. However, evidence about the effects of dietary factors on DNA methylation patterns in humans is fragmentary. This study was initiated to collate evidence for causal links between dietary factors and changes in DNA methylation patterns. We carried out a systematic review of dietary intervention studies in adult humans using Medline, EMBASE and Scopus. Out of 22 149 screened titles, sixty intervention studies were included, of which 65% were randomised (n 39). Most studies (53%) reported data from blood analyses, whereas 27% studied DNA methylation in colorectal mucosal biopsies. Folic acid was the most common intervention agent (33%). There was great heterogeneity in the methods used for assessing DNA methylation and in the genomic loci investigated. Meta-analysis of the effect of folic acid on global DNA methylation revealed strong evidence that supplementation caused hypermethylation in colorectal mucosa (P=0·009). Meta-regression analysis showed that the dose of supplementary folic acid was the only identified factor (P<0·001) showing a positive relationship. In summary, there is limited evidence from intervention studies of effects of dietary factors, other than folic acid, on DNA methylation patterns in humans. In addition, the application of multiple different assays and investigations of different genomic loci makes it difficult to compare, or to combine, data across studies.


Genes ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 263 ◽  
Author(s):  
Elisa Cerruti ◽  
Cinzia Comino ◽  
Alberto Acquadro ◽  
Gianpiero Marconi ◽  
Anna Maria Repetto ◽  
...  

Globe artichoke represents one of the main horticultural species of the Mediterranean basin, and ‘Spinoso sardo’ is the most widespread and economically relevant varietal type in Sardinia, Italy. In the last decades, in vitro culture of meristematic apices has increased the frequency of aberrant plants in open-field production. These off-type phenotypes showed highly pinnate-parted leaves and late inflorescence budding, and emerged from some branches of the true-to-type ‘Spinoso sardo’ plants. This phenomenon cannot be foreseen and is reversible through generations, suggesting the occurrence of epigenetic alterations. Here, we report an exploratory study on DNA methylation patterns in off-type/true-to-type globe artichoke plants, using a modified EpiRADseq technology, which allowed the identification of 2,897 differentially methylated loci (DML): 1,998 in CG, 458 in CHH, and 441 in CHG methylation contexts of which 720, 88, and 152, respectively, were in coding regions. Most of them appeared involved in primary metabolic processes, mostly linked to photosynthesis, regulation of flower development, and regulation of reproductive processes, coherently with the observed phenotype. Differences in the methylation status of some candidate genes were integrated with transcriptional analysis to test whether these two regulation levels might interplay in the emergence and spread of the ‘Spinoso sardo’ non-conventional phenotype.


2006 ◽  
Vol 18 (2) ◽  
pp. 63 ◽  
Author(s):  
Jacquetta M. Trasler

The acquisition of genomic DNA methylation patterns, including those important for development, begins in the germ line. In particular, imprinted genes are differentially marked in the developing male and female germ cells to ensure parent-of-origin-specific expression in the offspring. Abnormalities in imprints are associated with perturbations in growth, placental function, neurobehavioural processes and carcinogenesis. Based, for the most part, on data from the well-characterised mouse model, the present review will describe recent studies on the timing and mechanisms underlying the acquisition and maintenance of DNA methylation patterns in gametes and early embryos, as well as the consequences of altering these patterns.


2021 ◽  
Author(s):  
Romain Barres ◽  
Emil Andersen ◽  
Wolf Reik ◽  
Stephen Clark ◽  
Lars Ingerslev ◽  
...  

Epigenetic marks in gametes modulate developmental programming after fertilization. Spermatozoa from obese men exhibit distinct epigenetic signatures compared to lean men, however, whether epigenetic differences are concentrated in a sub-population of spermatozoa or spread across the ejaculate population is unknown. Here, by using whole-genome single-cell bisulfite sequencing on 87 motile spermatozoa from 8 individuals (4 lean and 4 obese), we found that spermatozoa within single ejaculates are highly heterogeneous and contain subsets of spermatozoa with marked imprinting defects. Comparing lean and obese subjects, we discovered methylation differences across two large CpG dense regions located near PPM1D and LINC01237. These findings confirm that sperm DNA methylation is altered in human obesity and indicate that single ejaculates contain subpopulations of spermatozoa carrying distinct DNA methylation patterns. Distinct epigenetic patterns of spermatozoa within an ejaculate may result in different intergenerational effects and therefore influence strategies aiming to prevent epigenetic-related disorders in the offspring.


Blood ◽  
2009 ◽  
Vol 113 (9) ◽  
pp. 1892-1898 ◽  
Author(s):  
Hui Yang ◽  
Tapan Kadia ◽  
Lianchun Xiao ◽  
Carlos E. Bueso-Ramos ◽  
Koyu Hoshino ◽  
...  

Pretreatment aberrant DNA methylation patterns are stable at time of relapse in acute lymphocytic leukemia (ALL). We hypothesized that the detection of residual methylation alterations at the time of morphologic remission may predict for worse prognosis. We developed a real-time bisulfite polymerase chain reaction assay and analyzed the methylation levels of p73, p15, and p57KIP2 at the time of initial remission in 199 patients with Philadelphia chromosome-negative and MLL− ALL. Residual p73 methylation was detected in 18 (9.5%) patients, p15 in 33 (17.4%), and p57KIP2 in 7 (3.7%); 140 (74%) patients had methylation of 0 genes and 48 (25%) of more than or equal to 1 gene. In 123 (65%) patients, matched pretreatment samples were also studied and compared with remission ones: in 82 of those with initial aberrant methylation of at least one gene, 59 (72%) had no detectable methylation at remission and 23 (28%) had detectable residual methylation. By multivariate analysis, the presence of residual p73 methylation was associated with a significant shorter duration of first complete remission (hazard ratio = 2.68, P = .003) and overall survival (hazard ratio = 2.69, P = .002). In conclusion, detection of epigenetic alterations allows the identification of patients with ALL with standard risk but with poor prognosis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jin Yang ◽  
Qinglin Yu ◽  
Zhifeng Xu ◽  
Nan Zheng ◽  
Jinyan Zhong ◽  
...  

Antiplatelet therapy has become a cornerstone in the treatment of coronary heart disease (CHD). However, due to high-residual-platelet-reactivity, clopidogrel resistance (CR) is a common phenomenon, and it is rarely known about the relationship between CR and epigenetic changes. This study compared the whole genomic methylation patterns of blood samples from patients with CR (n = 6) and non-CR (n = 6) with the Human Methylation 850K BeadChip assay. We explored differentially methylated CpG sites, genes, and pathways using bioinformatics profiling. The CR and control groups showed significantly different DNA methylation at 7,098 sites, with 979 sites showing hypermethylation and 6,119 sites showing hypomethylation. The pyrosequencing method was used to validate four differentially methylated CpG loci (cg23371584, cg15971518, cg04481923, cg22507406), confirming that DNA methylation was associated with the risk of CR (30 CR vs. 30 non-CR). The relative mRNA expression of the four genes (BTG2, PRG2, VTRNA2-1, PER3) corresponding to the loci above was also associated with CR, suggesting that alterations in DNA methylation may affect the expression of these four genes, eventually resulting in CR. Additionally, differentially methylated sites are partially related to genes and pathways that play key roles in process of circadian entrainment, insulin secretion, and so on. Hence, the mechanism and biological regulation of CR might be reflected through these epigenetic alterations, but future research will need to address the causal relationships.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1800
Author(s):  
Giusi Russo ◽  
Alfonso Tramontano ◽  
Ilaria Iodice ◽  
Lorenzo Chiariotti ◽  
Antonio Pezone

Cancer evolution is associated with genomic instability and epigenetic alterations, which contribute to the inter and intra tumor heterogeneity, making genetic markers not accurate to monitor tumor evolution. Epigenetic changes, aberrant DNA methylation and modifications of chromatin proteins, determine the “epigenome chaos”, which means that the changes of epigenetic traits are randomly generated, but strongly selected by deterministic events. Disordered changes of DNA methylation profiles are the hallmarks of all cancer types, but it is not clear if aberrant methylation is the cause or the consequence of cancer evolution. Critical points to address are the profound epigenetic intra- and inter-tumor heterogeneity and the nature of the heterogeneity of the methylation patterns in each single cell in the tumor population. To analyze the methylation heterogeneity of tumors, new technological and informatic tools have been developed. This review discusses the state of the art of DNA methylation analysis and new approaches to reduce or solve the complexity of methylated alleles in DNA or cell populations.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3602
Author(s):  
Aisling A. Geraghty ◽  
Alex Sexton-Oates ◽  
Eileen C. O’Brien ◽  
Richard Saffery ◽  
Fionnuala M. McAuliffe

A range of in utero and early-life factors can influence offspring epigenetics, particularly DNA methylation patterns. This study aimed to investigate the influence of a dietary intervention and factors in pregnancy on offspring epigenetic profile at five years of age. We also explored associations between body composition and methylation profile in a cross-sectional analysis. Sixty-three five-year-olds were selected from the ROLO Kids Study, a Randomized controlled trial Of a LOw glycemic index dietary intervention from the second trimester of pregnancy. DNA methylation was investigated in 780,501 CpG sites in DNA isolated from saliva. Principal component analysis identified no association between maternal age, weight, or body mass index (BMI) during pregnancy and offspring DNA methylation (p > 0.01). There was no association with the dietary intervention during pregnancy, however, gene pathway analysis identified functional clusters involved in insulin secretion and resistance that differed between the intervention and control. There were no associations with child weight or adiposity at five years of age; however, change in weight from six months was associated with variation in methylation. We identified no evidence of long-lasting influences of maternal diet or factors on DNA methylation at age five years. However, changes in child weight were associated with the methylome in childhood.


Sign in / Sign up

Export Citation Format

Share Document