scholarly journals Extracellular Vesicles: New Endogenous Shuttles for miRNAs in Cancer Diagnosis and Therapy?

2020 ◽  
Vol 21 (18) ◽  
pp. 6486 ◽  
Author(s):  
Stefano Martellucci ◽  
Nicola Salvatore Orefice ◽  
Adriano Angelucci ◽  
Amalia Luce ◽  
Michele Caraglia ◽  
...  

Extracellular Vesicles (EVs) represent a heterogeneous population of membranous cell-derived structures, including cargo-oriented exosomes and microvesicles. EVs are functionally associated with intercellular communication and play an essential role in multiple physiopathological conditions. Shedding of EVs is frequently increased in malignancies and their content, including proteins and nucleic acids, altered during carcinogenesis and cancer progression. EVs-mediated intercellular communication between tumor cells and between tumor and stromal cells can modulate, through cargo miRNA, the survival, progression, and drug resistance in cancer conditions. These consolidated suggestions and EVs’ stability in bodily fluids have led to extensive investigations on the potential employment of circulating EVs-derived miRNAs as tumor biomarkers and potential therapeutic vehicles. In this review, we highlight the current knowledge about circulating EVs-miRNAs in human cancer and the application limits of these tools, discussing their clinical utility and challenges in functions such as in biomarkers and instruments for diagnosis, prognosis, and therapy.

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhilin Qiu ◽  
Qin Wang ◽  
Lei Liu ◽  
Guozheng Li ◽  
Yi Hao ◽  
...  

The dysregulation of transfer RNA (tRNA) expression contributes to the diversity of proteomics, heterogeneity of cell populations, and instability of the genome, which may be related to human cancer susceptibility. However, the relationship between tRNA dysregulation and cancer susceptibility remains elusive because the landscape of cancer-associated tRNAs has not been portrayed yet. Furthermore, the molecular mechanisms of tRNAs involved in tumorigenesis and cancer progression have not been systematically understood. In this review, we detail current knowledge of cancer-related tRNAs and comprehensively summarize the basic characteristics and functions of these tRNAs, with a special focus on their role and involvement in human cancer. This review bridges the gap between tRNAs and cancer and broadens our understanding of their relationship, thus providing new insights and strategies to improve the potential clinical applications of tRNAs for cancer diagnosis and therapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nan-Xing Jiang ◽  
Xue-Lian Li

As a rate-limiting step in pregnancy, embryo implantation is highly dependent on intercellular communication. Extracellular vesicles (EVs) are newly identified to be important in the course of intercellular communication. EVs have been isolated from a wide variety of biofluids and tissues, including plasma, liver, uterine, semen, embryo, etc. The present and future use of EVs not only as biomarkers, but also as targeting drug delivery system, is promisingly pave the way for advanced comprehension of implantation failure in reproductive diseases. However, as the precise mechanisms of EVs in embryo implantation has not been elucidated yet. Herein, we summarize the current knowledge on the diverse effects of EVs from various sources and their cargos such as microRNA, long non-coding RNA, protein, etc. on embryo implantation, and the potential mechanisms of EVs in reproductive diseases such as recurrent implantation failure, polycystic ovary syndrome and endometriosis. It is essential to note that many of the biologically plausible functions of EVs in embryo implantation discussed in present literatures still need further research in vivo.


Proteomes ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 21 ◽  
Author(s):  
Magdalena Surman ◽  
Ewa Stępień ◽  
Małgorzata Przybyło

Malignant melanoma is one of the most aggressive types of cancer, and its incidence is increasing rapidly each year. Despite the extensive research into improved diagnostic and treatment methods, early detection and disease constraint still present significant challenges. As successful isolation protocols have been developed, extracellular vesicles (EVs) have become the subject of extensive investigation in terms of their role in cancer progression and as a possible source of disease biomarkers. Besides functional studies, quantitative and qualitative proteomics have recently emerged as promising tools for the advancement of melanoma biomarkers. Nevertheless, the amount of data concerning the proteome of melanoma-derived EVs is still very limited. In this review we cover the current knowledge on protein content of melanoma-derived EVs, with a focus on their potential role in the development and progression of melanomas.


2019 ◽  
Vol 20 (10) ◽  
pp. 2584 ◽  
Author(s):  
Shinsuke Kikuchi ◽  
Yusuke Yoshioka ◽  
Marta Prieto-Vila ◽  
Takahiro Ochiya

The primary cause of mortality among patients with cancer is the progression of the tumor, better known as cancer invasion and metastasis. Cancer progression involves a series of biologically important steps in which the cross-talk between cancer cells and the cells in the surrounding environment is positioned as an important issue. Notably, angiogenesis is a key tumorigenic phenomenon for cancer progression. Cancer-related extracellular vesicles (EVs) commonly contribute to the modulation of a microenvironment favorable to cancer cells through their function of cell-to-cell communication. Vascular-related cells such as endothelial cells (ECs) and platelets activated by cancer cells and cancer-derived EVs develop procoagulant and proinflammatory statuses, which help excite the tumor environment, and play major roles in tumor progression, including in tumor extravasation, tumor cell microthrombi formation, platelet aggregation, and metastasis. In particular, cancer-derived EVs influence ECs, which then play multiple roles such as contributing to tumor angiogenesis, loss of endothelial vascular barrier by binding to ECs, and the subsequent endothelial-to-mesenchymal transition, i.e., extracellular matrix remodeling. Thus, cell-to-cell communication between cancer cells and ECs via EVs may be an important target for controlling cancer progression. This review describes the current knowledge regarding the involvement of EVs, especially exosomes derived from cancer cells, in EC-related cancer progression.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5669
Author(s):  
Akbar Lulu Marzan ◽  
Sarah Elizabeth Stewart

Pancreatic cancer is one of the deadliest cancers worldwide, with a 5-year survival rate of less than 10%. This dismal survival rate can be attributed to several factors including insufficient diagnostics, rapid metastasis and chemoresistance. To identify new treatment options for improved patient outcomes, it is crucial to investigate the underlying mechanisms that contribute to pancreatic cancer progression. Accumulating evidence suggests that extracellular vesicles, including exosomes and microvesicles, are critical players in pancreatic cancer progression and chemoresistance. In addition, extracellular vesicles also have the potential to serve as promising biomarkers, therapeutic targets and drug delivery tools for the treatment of pancreatic cancer. In this review, we aim to summarise the current knowledge on the role of extracellular vesicles in pancreatic cancer progression, metastasis, immunity, metabolic dysfunction and chemoresistance, and discuss their potential roles as biomarkers for early diagnosis and drug delivery vehicles for treatment of pancreatic cancer.


2019 ◽  
Vol 1 (1) ◽  
pp. 10-17
Author(s):  
Stefan Holdenrieder

Extracellular vesicles (EVs) are a heterogeneous group of subcellular particles shed from cells of origin by diverse mechanisms. They carry specific information and are responsible for efficient intercellular communication that is highly important in many physiological processes as well as for the pathogenesis and progression of several diseases. Their unique properties offer the opportunity to use them also for the delivery of therapeutic drugs. When released into the blood or other bodily fluids they serve as sensitive liquid profiling biomarkers in many dispositions. For future use in diagnostic settings, further efforts are required for better standardization of the methods as well as the analytical, pre-analytical and clinical validation of the markers.


2019 ◽  
Vol 25 (17) ◽  
pp. 1980-2006 ◽  
Author(s):  
Laura Patras ◽  
Manuela Banciu

:Increasing evidence has suggested that extracellular vesicles (EV) mediated bidirectional transfer of functional molecules (such as proteins, different types of RNA, and lipids) between cancer cells and tumor stromal cells (immune cells, endothelial cells, fibroblasts, stem cells) and strongly contributed to the reinforcement of cancer progression. Thus, intercellular EV-mediated signaling in tumor microenvironment (TME) is essential in the modulation of all processes that support and promote tumor development like immune suppression, angiogenesis, invasion and metastasis, and resistance of tumor cells to anticancer treatments.:Besides EV potential to revolutionize our understanding of the cancer cell-stromal cells crosstalk in TME, their ability to selectively transfer different cargos to recipient cells has created excitement in the field of tumortargeted delivery of specific molecules for anticancer treatments. Therefore, in tight connection with previous findings, this review brought insight into the dual role of EV in modulation of TME. Thus, on one side EV create a favorable phenotype of tumor stromal cells for tumor progression; however, as a future new class of anticancer drug delivery systems EV could re-educate the TME to overcome main supportive processes for malignancy progression.


Author(s):  
Naoya Kuriyama ◽  
Yusuke Yoshioka ◽  
Shinsuke Kikuchi ◽  
Nobuyoshi Azuma ◽  
Takahiro Ochiya

Tumor progression involves a series of biologically important steps in which the crosstalk between cancer cells and the surrounding environment is an important issue. Angiogenesis is a key tumorigenic phenomenon for cancer progression. Tumor-related extracellular vesicles (EVs) modulate the tumor microenvironment (TME) through cell-to-cell communication. Tumor cells in a hypoxic TME release more EVs than cells in a normoxic environment due to uncontrollable tumor proliferation. Tumor-derived EVs in the TME influence endothelial cells (ECs), which then play multiple roles, contributing to tumor angiogenesis, loss of the endothelial vascular barrier by binding to ECs, and subsequent endothelial-to-mesenchymal transition. In contrast, they also indirectly induce tumor angiogenesis through the phenotype switching of various cells into cancer-associated fibroblasts, the activation of tumor-associated ECs and platelets, and remodeling of the extracellular matrix. Here, we review current knowledge regarding the involvement of EVs in tumor vascular-related cancer progression.


Diagnostics ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 563
Author(s):  
David Kalfert ◽  
Marie Ludvikova ◽  
Martin Pesta ◽  
Jaroslav Ludvik ◽  
Lucie Dostalova ◽  
...  

MiR-34a belongs to the class of small non-coding regulatory RNAs and functions as a tumor suppressor. Under physiological conditions, miR-34a has an inhibitory effect on all processes related to cell proliferation by targeting many proto-oncogenes and silencing them on the post-transcriptional level. However, deregulation of miR-34a was shown to play important roles in tumorigenesis and processes associated with cancer progression, such as tumor-associated epithelial-mesenchymal transition, invasion, and metastasis. Moreover, further understanding of miR-34a molecular mechanisms in cancer are indispensable for the development of effective diagnosis and treatments. In this review, we summarized the current knowledge on miR-34a functions in human disease with an emphasis on its regulation and dysregulation, its role in human cancer, specifically head and neck squamous carcinoma and thyroid cancer, and emerging role as a disease diagnostic and prognostic biomarker and the novel therapeutic target in oncology.


2013 ◽  
Vol 47 (3) ◽  
pp. 197-205 ◽  
Author(s):  
Eva Ogorevc ◽  
Veronika Kralj-Iglic ◽  
Peter Veranic

AbstractBackground.Cancer has traditionally been considered as a disease resulting from gene mutations. New findings in biology are challenging gene-centered explanations of cancer progression and redirecting them to the non-genetic origins of tumorigenicity. It has become clear that intercellular communication plays a crucial role in cancer progression. Among the most intriguing ways of intercellular communication is that via extracellular vesicles (EVs). EVs are membrane structures released from various types of cells. After separation from the mother membrane, EVs become mobile and may travel from the extracellular space to blood and other body fluids.Conclusions.Recently it has been shown that tumour cells are particularly prone to vesiculation and that tumour-derived EVs can carry proteins, lipids and nucleic acids causative of cancer progression. The uptake of tumour-derived EVs by noncancerous cells can change their normal phenotype to cancerous. The suppression of vesiculation could slow down tumour growth and the spread of metastases. The purpose of this review is to highlight examples of EVmediated cancer phenotypic transformation in the light of possible therapeutic applications.


Sign in / Sign up

Export Citation Format

Share Document