scholarly journals Wnt-Independent and Wnt-Dependent Effects of APC Loss on the Chemotherapeutic Response

2020 ◽  
Vol 21 (21) ◽  
pp. 7844
Author(s):  
Casey D. Stefanski ◽  
Jenifer R. Prosperi

Resistance to chemotherapy occurs through mechanisms within the epithelial tumor cells or through interactions with components of the tumor microenvironment (TME). Chemoresistance and the development of recurrent tumors are two of the leading factors of cancer-related deaths. The Adenomatous Polyposis Coli (APC) tumor suppressor is lost in many different cancers, including colorectal, breast, and prostate cancer, and its loss correlates with a decreased overall survival in cancer patients. While APC is commonly known for its role as a negative regulator of the WNT pathway, APC has numerous binding partners and functional roles. Through APC’s interactions with DNA repair proteins, DNA replication proteins, tubulin, and other components, recent evidence has shown that APC regulates the chemotherapy response in cancer cells. In this review article, we provide an overview of some of the cellular processes in which APC participates and how they impact chemoresistance through both epithelial- and TME-derived mechanisms.

2010 ◽  
Vol 30 (18) ◽  
pp. 4507-4520 ◽  
Author(s):  
Reto S. Kohler ◽  
Debora Schmitz ◽  
Hauke Cornils ◽  
Brian A. Hemmings ◽  
Alexander Hergovich

ABSTRACT MOB proteins are integral components of signaling pathways controlling important cellular processes, such as mitotic exit, centrosome duplication, apoptosis, and cell proliferation in eukaryotes. The human MOB protein family consists of six distinct members (human MOB1A [hMOB1A], -1B, -2, -3A, -3B, and -3C), with hMOB1A/B the best studied due to their putative tumor-suppressive functions through the regulation of NDR/LATS kinases. The roles of the other MOB proteins are less well defined. Accordingly, we characterized all six human MOB proteins in the context of NDR/LATS binding and their abilities to activate NDR/LATS kinases. hMOB3A/B/C proteins neither bind nor activate any of the four human NDR/LATS kinases. We found that both hMOB2 and hMOB1A bound to the N-terminal region of NDR1. However, our data suggest that the binding modes differ significantly. Our work revealed that hMOB2 competes with hMOB1A for NDR binding. hMOB2, in contrast to hMOB1A/B, is bound to unphosphorylated NDR. Moreover, RNA interference (RNAi) depletion of hMOB2 resulted in increased NDR kinase activity. Consistent with these findings, hMOB2 overexpression interfered with the functional roles of NDR in death receptor signaling and centrosome overduplication. In summary, our data indicate that hMOB2 is a negative regulator of human NDR kinases in biochemical and biological settings.


2021 ◽  
Vol 11 (6) ◽  
pp. 513
Author(s):  
Zheng Zhang ◽  
Meng Gu ◽  
Zhongze Gu ◽  
Yan-Ru Lou

Genetic polymorphisms are defined as the presence of two or more different alleles in the same locus, with a frequency higher than 1% in the population. Since the discovery of long non-coding RNAs (lncRNAs), which refer to a non-coding RNA with a length of more than 200 nucleotides, their biological roles have been increasingly revealed in recent years. They regulate many cellular processes, from pluripotency to cancer. Interestingly, abnormal expression or dysfunction of lncRNAs is closely related to the occurrence of human diseases, including cancer and degenerative neurological diseases. Particularly, their polymorphisms have been found to be associated with altered drug response and/or drug toxicity in cancer treatment. However, molecular mechanisms are not yet fully elucidated, which are expected to be discovered by detailed studies of RNA–protein, RNA–DNA, and RNA–lipid interactions. In conclusion, lncRNAs polymorphisms may become biomarkers for predicting the response to chemotherapy in cancer patients. Here we review and discuss how gene polymorphisms of lncRNAs affect cancer chemotherapeutic response. This knowledge may pave the way to personalized oncology treatments.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3606
Author(s):  
Samuel P. Boyson ◽  
Cong Gao ◽  
Kathleen Quinn ◽  
Joseph Boyd ◽  
Hana Paculova ◽  
...  

Histone acetylation is generally associated with an open chromatin configuration that facilitates many cellular processes including gene transcription, DNA repair, and DNA replication. Aberrant levels of histone lysine acetylation are associated with the development of cancer. Bromodomains represent a family of structurally well-characterized effector domains that recognize acetylated lysines in chromatin. As part of their fundamental reader activity, bromodomain-containing proteins play versatile roles in epigenetic regulation, and additional functional modules are often present in the same protein, or through the assembly of larger enzymatic complexes. Dysregulated gene expression, chromosomal translocations, and/or mutations in bromodomain-containing proteins have been correlated with poor patient outcomes in cancer. Thus, bromodomains have emerged as a highly tractable class of epigenetic targets due to their well-defined structural domains, and the increasing ease of designing or screening for molecules that modulate the reading process. Recent developments in pharmacological agents that target specific bromodomains has helped to understand the diverse mechanisms that bromodomains play with their interaction partners in a variety of chromatin processes, and provide the promise of applying bromodomain inhibitors into the clinical field of cancer treatment. In this review, we explore the expression and protein interactome profiles of bromodomain-containing proteins and discuss them in terms of functional groups. Furthermore, we highlight our current understanding of the roles of bromodomain-containing proteins in cancer, as well as emerging strategies to specifically target bromodomains, including combination therapies using bromodomain inhibitors alongside traditional therapeutic approaches designed to re-program tumorigenesis and metastasis.


2021 ◽  
Vol 7 (5) ◽  
pp. eabe3445
Author(s):  
Yicun Wang ◽  
Jinhui Wu ◽  
Hui Chen ◽  
Yang Yang ◽  
Chengwu Xiao ◽  
...  

Cancer stem cells (CSCs) are involved in tumorigenesis, recurrence, and therapy resistance. To identify critical regulators of sarcoma CSCs, we performed a reporter-based genome-wide CRISPR-Cas9 screen and uncovered Kruppel-like factor 11 (KLF11) as top candidate. In vitro and in vivo functional annotation defined a negative role of KLF11 in CSCs. Mechanistically, KLF11 and YAP/TEAD bound to adjacent DNA sites along with direct interaction. KLF11 recruited SIN3A/HDAC to suppress the transcriptional output of YAP/TEAD, which, in turn, promoted KLF11 transcription, forming a negative feedback loop. However, in CSCs, this negative feedback was lost because of epigenetic silence of KLF11, causing sustained YAP activation. Low KLF11 was associated with poor prognosis and chemotherapy response in patients with sarcoma. Pharmacological activation of KLF11 by thiazolidinedione effectively restored chemotherapy response. Collectively, our study identifies KLF11 as a negative regulator in sarcoma CSCs and potential therapeutic target.


2021 ◽  
Author(s):  
Roy Baas ◽  
Fenna J. van der Wal ◽  
Onno B. Bleijerveld ◽  
Haico van Attikum ◽  
Titia K. Sixma

AbstractBRCA1-associated protein 1 (BAP1) is a tumor suppressor and its loss can result in mesothelioma, uveal and cutaneous melanoma, clear cell renal cell carcinoma and bladder cancer. BAP1 is a deubiquitinating enzyme of the UCH class that has been implicated in various cellular processes like cell growth, cell cycle progression, ferroptosis and ER metabolic stress response. ASXL proteins activate BAP1 by forming the polycomb repressive deubiquitinase (PR-DUB) complex which acts on H2AK119ub1. Besides the ASXL proteins, BAP1 is known to interact with an established set of additional proteins.Here, we identify novel BAP1 interacting proteins in the cytoplasm by expressing GFP-tagged BAP1 in an endogenous BAP1 deficient cell line using affinity purification followed by mass spectrometry (AP-MS) analysis. Among these novel interacting proteins are Histone acetyltransferase 1 (HAT1) and all subunits of the heptameric coat protein complex I (COPI) that is involved in vesicle formation and protein cargo binding and sorting. We validate that the HAT1 and COPI interactions occur at endogenous levels but find that this interaction with COPI is not mediated through the C-terminal KxKxx cargo sorting signals of the COPI complex.


The Breast ◽  
2008 ◽  
Vol 17 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Hyun-Ah Kim ◽  
Cha-Kyong Yom ◽  
Byung-In Moon ◽  
Kuk-Jin Choe ◽  
Sun-Hee Sung ◽  
...  

2018 ◽  
Vol 87 (1) ◽  
pp. 839-869 ◽  
Author(s):  
Elisabeth M. Storck ◽  
Cagakan Özbalci ◽  
Ulrike S. Eggert

Cells depend on hugely diverse lipidomes for many functions. The actions and structural integrity of the plasma membrane and most organelles also critically depend on membranes and their lipid components. Despite the biological importance of lipids, our understanding of lipid engagement, especially the roles of lipid hydrophobic alkyl side chains, in key cellular processes is still developing. Emerging research has begun to dissect the importance of lipids in intricate events such as cell division. This review discusses how these structurally diverse biomolecules are spatially and temporally regulated during cell division, with a focus on cytokinesis. We analyze how lipids facilitate changes in cellular morphology during division and how they participate in key signaling events. We identify which cytokinesis proteins are associated with membranes, suggesting lipid interactions. More broadly, we highlight key unaddressed questions in lipid cell biology and techniques, including mass spectrometry, advanced imaging, and chemical biology, which will help us gain insights into the functional roles of lipids.


2019 ◽  
Vol 21 (1) ◽  
pp. 67 ◽  
Author(s):  
Natalia Fili ◽  
Christopher P. Toseland

Unconventional myosins are multi-potent molecular motors that are assigned important roles in fundamental cellular processes. Depending on their mechano-enzymatic properties and structural features, myosins fulfil their roles by acting as cargo transporters along the actin cytoskeleton, molecular anchors or tension sensors. In order to perform such a wide range of roles and modes of action, myosins need to be under tight regulation in time and space. This is achieved at multiple levels through diverse regulatory mechanisms: the alternative splicing of various isoforms, the interaction with their binding partners, their phosphorylation, their applied load and the composition of their local environment, such as ions and lipids. This review summarizes our current knowledge of how unconventional myosins are regulated, how these regulatory mechanisms can adapt to the specific features of a myosin and how they can converge with each other in order to ensure the required tight control of their function.


Viruses ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 99
Author(s):  
Fangyi Wu ◽  
Zhenmin Niu ◽  
Bin Zhou ◽  
Pengcheng Li ◽  
Feng Qian

Proteasome is a large protein complex, which degrades most intracellular proteins. It regulates numerous cellular processes, including the removal of misfolded or unfolded proteins, cell cycle control, and regulation of apoptosis. However, the function of proteasome subunits in viral immunity has not been well characterized. In this study, we identified PSMB1, a member of the proteasome β subunits (PSMB) family, as a negative regulator of innate immune responses during viral infection. Knockdown of PSMB1 enhanced the RNA virus-induced cytokine and chemokine production. Overexpression of PSMB1 abolished virus-induced activation of the interferon-stimulated response element (ISRE) and interferon beta (IFNβ) promoters. Mechanistically, PSMB1 inhibited the activation of RIG-I-like receptor (RLR) and Toll-like receptor 3 (TLR3) signaling pathways. PSMB1 was induced after viral infection and its interaction with IKK-ε promoted degradation of IKK-ε through the ubiquitin-proteasome system. Collectively, our study demonstrates PSMB1 is an important regulator of innate immune signaling.


2020 ◽  
Vol 21 (15) ◽  
pp. 5539
Author(s):  
Keisuke Komatsuya ◽  
Kei Kaneko ◽  
Kohji Kasahara

Lipid rafts are dynamic assemblies of glycosphingolipids, sphingomyelin, cholesterol, and specific proteins which are stabilized into platforms involved in the regulation of vital cellular processes. The rafts at the cell surface play important functions in signal transduction. Recent reports have demonstrated that lipid rafts are spatially and compositionally heterogeneous in the single-cell membrane. In this review, we summarize our recent data on living platelets using two specific probes of raft components: lysenin as a probe of sphingomyelin-rich rafts and BCθ as a probe of cholesterol-rich rafts. Sphingomyelin-rich rafts that are spatially and functionally distinct from the cholesterol-rich rafts were found at spreading platelets. Fibrin is translocated to sphingomyelin-rich rafts and platelet sphingomyelin-rich rafts act as platforms where extracellular fibrin and intracellular actomyosin join to promote clot retraction. On the other hand, the collagen receptor glycoprotein VI is known to be translocated to cholesterol-rich rafts during platelet adhesion to collagen. Furthermore, the functional roles of platelet glycosphingolipids and platelet raft-binding proteins including G protein-coupled receptors, stomatin, prohibitin, flotillin, and HflK/C-domain protein family, tetraspanin family, and calcium channels are discussed.


Sign in / Sign up

Export Citation Format

Share Document