scholarly journals The Potential of Hydrogen Sulfide Donors in Treating Cardiovascular Diseases

2021 ◽  
Vol 22 (4) ◽  
pp. 2194
Author(s):  
Yi-Zhen Wang ◽  
Ebenezeri Erasto Ngowi ◽  
Di Wang ◽  
Hui-Wen Qi ◽  
Mi-Rong Jing ◽  
...  

Hydrogen sulfide (H2S) has long been considered as a toxic gas, but as research progressed, the idea has been updated and it has now been shown to have potent protective effects at reasonable concentrations. H2S is an endogenous gas signaling molecule in mammals and is produced by specific enzymes in different cell types. An increasing number of studies indicate that H2S plays an important role in cardiovascular homeostasis, and in most cases, H2S has been reported to be downregulated in cardiovascular diseases (CVDs). Similarly, in preclinical studies, H2S has been shown to prevent CVDs and improve heart function after heart failure. Recently, many H2S donors have been synthesized and tested in cellular and animal models. Moreover, numerous molecular mechanisms have been proposed to demonstrate the effects of these donors. In this review, we will provide an update on the role of H2S in cardiovascular activities and its involvement in pathological states, with a special focus on the roles of exogenous H2S in cardiac protection.

Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1074
Author(s):  
Giuseppina Divisato ◽  
Silvia Piscitelli ◽  
Mariantonietta Elia ◽  
Emanuela Cascone ◽  
Silvia Parisi

Embryonic stem cells (ESCs) have the extraordinary properties to indefinitely proliferate and self-renew in culture to produce different cell progeny through differentiation. This latter process recapitulates embryonic development and requires rounds of the epithelial–mesenchymal transition (EMT). EMT is characterized by the loss of the epithelial features and the acquisition of the typical phenotype of the mesenchymal cells. In pathological conditions, EMT can confer stemness or stem-like phenotypes, playing a role in the tumorigenic process. Cancer stem cells (CSCs) represent a subpopulation, found in the tumor tissues, with stem-like properties such as uncontrolled proliferation, self-renewal, and ability to differentiate into different cell types. ESCs and CSCs share numerous features (pluripotency, self-renewal, expression of stemness genes, and acquisition of epithelial–mesenchymal features), and most of them are under the control of microRNAs (miRNAs). These small molecules have relevant roles during both embryogenesis and cancer development. The aim of this review was to recapitulate molecular mechanisms shared by ESCs and CSCs, with a special focus on the recently identified classes of microRNAs (noncanonical miRNAs, mirtrons, isomiRs, and competitive endogenous miRNAs) and their complex functions during embryogenesis and cancer development.


2009 ◽  
Vol 117 (3) ◽  
pp. 95-109 ◽  
Author(s):  
Jianli Niu ◽  
Pappachan E. Kolattukudy

Many of the major diseases, including cardiovascular disease, are widely recognized as inflammatory diseases. MCP-1 (monocyte chemotactic protein-1) plays a critical role in the development of cardiovascular diseases. MCP-1, by its chemotactic activity, causes diapedesis of monocytes from the lumen to the subendothelial space where they become foam cells, initiating fatty streak formation that leads to atherosclerotic plaque formation. Inflammatory macrophages probably play a role in plaque rupture and the resulting ischaemic episode as well as restenosis after angioplasty. There is strong evidence that MCP-1 plays a major role in myocarditis, ischaemia/reperfusion injury in the heart and in transplant rejection. MCP-1 also plays a role in cardiac repair and manifests protective effects under certain conditions. Such protective effects may be due to the induction of protective ER (endoplasmic reticulum) stress chaperones by MCP-1. Under sustained ER stress caused by chronic exposure to MCP-1, the protection would break down resulting in the development of heart failure. MCP-1 is also involved in ischaemic angiogenesis. The recent advances in our understanding of the molecular mechanisms that might be involved in the roles that MCP-1 plays in cardiovascular disease are reviewed. The gene expression changes induced by the signalling events triggered by MCP-1 binding to its receptor include the induction of a novel zinc-finger protein called MCPIP (MCP-1-induced protein), which plays critical roles in the development of the pathophysiology caused by MCP-1 production. The role of the MCP-1/CCR2 (CC chemokine receptor 2) system in diabetes, which is a major risk factor for cardiovascular diseases, is also reviewed briefly. MCP-1/CCR2- and/or MCPIP-targeted therapeutic approaches to intervene in inflammatory diseases, including cardiovascular diseases, may be feasible.


2009 ◽  
Vol 37 (6) ◽  
pp. 1171-1178 ◽  
Author(s):  
Ian C. Zachary ◽  
Paul Frankel ◽  
Ian M. Evans ◽  
Caroline Pellet-Many

NRPs (neuropilins) are receptors for class 3 semaphorins, polypeptides essential for axonal guidance, and for members of the VEGF (vascular endothelial growth factor) family of angiogenic cytokines. While mutant mouse studies show that NRP1 is essential for neuronal and cardiovascular development, little is known concerning the molecular mechanisms through which NRPs mediate the functions of their ligands in different cell types. NRP1 forms complexes with its co-receptors and is required for optimal function, but NRPs lack a clearly defined signalling domain and the role of NRP1 in receptor signalling and the function of the NRP1 cytosolic domain are unclear. Growing evidence indicates, however, that NRP1 plays a selective role in signalling at least in part via its C-terminal domain and interaction with intracellular binding partners.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Mireia Nager ◽  
Deepshikha Bhardwaj ◽  
Carles Cantí ◽  
Loreta Medina ◽  
Pere Nogués ◽  
...  

Glioblastoma multiforme (GBM) is a commonly occurring brain tumor with a poor prognosis. GBM can develop both “de novo” or evolve from a previous astrocytoma and is characterized by high proliferation and infiltration into the surrounding tissue. Following treatment (surgery, radiotherapy, and chemotherapy), tumors often reappear. Glioma-initiating cells (GICs) have been identified in GBM and are thought to be responsible for tumors initiation, their continued growth, and recurrence. β-catenin, a component of the cell-cell adhesion complex and of the canonical Wnt pathway, regulates proliferation, adhesion, and migration in different cell types. β-catenin and components of the Wnt canonical pathway are commonly overexpressed in GBM. Here, we review previous work on the role of Wnt/β-catenin signalling in glioma initiation, proliferation, and invasion. Understanding the molecular mechanisms regulating GIC biology and glioma progression may help in identifying novel therapeutic targets for GBM treatment.


Author(s):  
Lu Xu ◽  
Mohamed Y. Zaky ◽  
Waleed Yousuf ◽  
Anwar Ullah ◽  
Gehad R. Abdelbaset ◽  
...  

: Apigenin is an edible flavonoid widely distributed in natural plants including most vegetables and fruits. Previous studies have revealed that apigenin possesses multiple biological functions by demonstrating anti-inflammatory, anti-oxidative, anti-bacterial, anti-viral, anti-tumor and cardiovascular protective effects. Furthermore, recent progressions have disclosed a novel perspective of the anticancer roles of apigenin through its immunoregulatory functions. With the rapid progression of the groundbreaking strategies being developed for cancer immunotherapy, its immunoregulatory roles have become to be recognized as an intriguing feature of the multifaceted apigenin. However, our current understanding about this emerging role of apigenin still remains limited. Therefore, in the present review, we summarize recent advances on the immunoregulatory properties of apigenin in various diseases with a special focus on neoplasm. We briefly introduce clinical strategies of cancer immunotherapy and bring together findings on apigenin linked to immunoregulatory roles in immunotherapy-associated aspects. We discuss about the bioactivity, bioavailability, toxicity, and potential of apigenin to be considered as a therapeutic agent in antitumor immunotherapy. We summarize disclosed molecular mechanisms underlying the immunoregulatory roles of apigenin in cancer immunotherapy. Based on findings from the literature, apigenin has the potential to serve as a prospective adjuvant for anticancer immunotherapy and warrants further investigations.


Acta Naturae ◽  
2016 ◽  
Vol 8 (2) ◽  
pp. 79-86 ◽  
Author(s):  
P. V. Elizar’ev ◽  
D. V. Lomaev ◽  
D. A. Chetverina ◽  
P. G. Georgiev ◽  
M. M. Erokhin

Maintenance of the individual patterns of gene expression in different cell types is required for the differentiation and development of multicellular organisms. Expression of many genes is controlled by Polycomb (PcG) and Trithorax (TrxG) group proteins that act through association with chromatin. PcG/TrxG are assembled on the DNA sequences termed PREs (Polycomb Response Elements), the activity of which can be modulated and switched from repression to activation. In this study, we analyzed the influence of transcriptional read-through on PRE activity switch mediated by the yeast activator GAL4. We show that a transcription terminator inserted between the promoter and PRE doesnt prevent switching of PRE activity from repression to activation. We demonstrate that, independently of PRE orientation, high levels of transcription fail to dislodge PcG/TrxG proteins from PRE in the absence of a terminator. Thus, transcription is not the main factor required for PRE activity switch.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1002
Author(s):  
Fabiola Marino ◽  
Mariangela Scalise ◽  
Eleonora Cianflone ◽  
Luca Salerno ◽  
Donato Cappetta ◽  
...  

Over the years strong evidence has been accumulated showing that aerobic physical exercise exerts beneficial effects on the prevention and reduction of cardiovascular risk. Exercise in healthy subjects fosters physiological remodeling of the adult heart. Concurrently, physical training can significantly slow-down or even reverse the maladaptive pathologic cardiac remodeling in cardiac diseases, improving heart function. The underlying cellular and molecular mechanisms of the beneficial effects of physical exercise on the heart are still a subject of intensive study. Aerobic activity increases cardiovascular nitric oxide (NO) released mainly through nitric oxidase synthase 3 activity, promoting endothelium-dependent vasodilation, reducing vascular resistance, and lowering blood pressure. On the reverse, an imbalance between increasing free radical production and decreased NO generation characterizes pathologic remodeling, which has been termed the “nitroso-redox imbalance”. Besides these classical evidence on the role of NO in cardiac physiology and pathology, accumulating data show that NO regulate different aspects of stem cell biology, including survival, proliferation, migration, differentiation, and secretion of pro-regenerative factors. Concurrently, it has been shown that physical exercise generates physiological remodeling while antagonizes pathologic remodeling also by fostering cardiac regeneration, including new cardiomyocyte formation. This review is therefore focused on the possible link between physical exercise, NO, and stem cell biology in the cardiac regenerative/reparative response to physiological or pathological load. Cellular and molecular mechanisms that generate an exercise-induced cardioprotective phenotype are discussed in regards with myocardial repair and regeneration. Aerobic training can benefit cells implicated in cardiovascular homeostasis and response to damage by NO-mediated pathways that protect stem cells in the hostile environment, enhance their activation and differentiation and, in turn, translate to more efficient myocardial tissue regeneration. Moreover, stem cell preconditioning by and/or local potentiation of NO signaling can be envisioned as promising approaches to improve the post-transplantation stem cell survival and the efficacy of cardiac stem cell therapy.


Immuno ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 78-90
Author(s):  
Johannes Burtscher ◽  
Grégoire P. Millet

Like in other neurodegenerative diseases, protein aggregation, mitochondrial dysfunction, oxidative stress and neuroinflammation are hallmarks of Parkinson’s disease (PD). Differentiating characteristics of PD include the central role of α-synuclein in the aggregation pathology, a distinct vulnerability of the striato-nigral system with the related motor symptoms, as well as specific mitochondrial deficits. Which molecular alterations cause neurodegeneration and drive PD pathogenesis is poorly understood. Here, we summarize evidence of the involvement of three interdependent factors in PD and suggest that their interplay is likely a trigger and/or aggravator of PD-related neurodegeneration: hypoxia, acidification and inflammation. We aim to integrate the existing knowledge on the well-established role of inflammation and immunity, the emerging interest in the contribution of hypoxic insults and the rather neglected effects of brain acidification in PD pathogenesis. Their tight association as an important aspect of the disease merits detailed investigation. Consequences of related injuries are discussed in the context of aging and the interaction of different brain cell types, in particular with regard to potential consequences on the vulnerability of dopaminergic neurons in the substantia nigra. A special focus is put on the identification of current knowledge gaps and we emphasize the importance of related insights from other research fields, such as cancer research and immunometabolism, for neurodegeneration research. The highlighted interplay of hypoxia, acidification and inflammation is likely also of relevance for other neurodegenerative diseases, despite disease-specific biochemical and metabolic alterations.


2021 ◽  
Vol 21 ◽  
Author(s):  
Tahereh Zadeh Mehrizi

: Today, Platelets and platelet-derived nanoparticles and microparticles have found many applications in nanomedical technology. The results of our review study show that no article has been published in this field to review the current status of applications of these platelet derivatives so far. Therefore, in present study, our goal is to compare the applications of platelet derivatives and review their latest status between 2010 and 2020 to present the latest findings to researchers. A very interesting point about the role of platelet derivatives is the presence of molecules on their surface which makes them capable of hiding from the immune system, reaching different target cells, and specifically attaching to different cell types. According to the results of this study, most of their applications include drug delivery, diagnosis of various diseases, and tissue engineering. However, their application in drug delivery is limited due to heterogeneity, large size, and the possibility of interference with cellular pathways in microparticles derived from other cells. On the other hand, platelet nanoparticles are more controllable and have been widely used for drug delivery in treatment of cancer, atherosclerosis, thrombosis, infectious diseases, repair of damaged tissue, and photothermal therapy. The results of this study show that platelet nanoparticles are more controllable than platelet microparticles and have a higher potential for use in medicine.


Development ◽  
1973 ◽  
Vol 30 (2) ◽  
pp. 499-509
Author(s):  
Janet E. Hornby

Cell suspensions were prepared from the kidney, liver and heart of chick embryos of 5 or 8 days of incubation, and from the limb-buds of chick embryos of 5, 6, 7, 8 or 9 days of incubation. When these suspensions were aggregated under laminar shear in a Couette viscometer or random motion in a reciprocating shaker they obeyed the theoretical relationships derived for flocculating lyophobic sols. The values of the collision efficiency found for the different cell types under given conditions were used to calculate the force of interaction between cells of each type. The force of interaction ranged between 9 × 10−11 N (8-day heart) and 3 × 10−9 N (8-day liver). The forces of interaction between cells appear to be responsible for aligning the membranes of adjacent cells with a 10–20 nm gap. It is possible to arrange the cell types in a hierarchy based on the forces of interaction between them. The possible role of these forces in cell specificity is considered.


Sign in / Sign up

Export Citation Format

Share Document