scholarly journals Characterization of Potency of the P2Y13 Receptor Agonists: A Meta-Analysis

2021 ◽  
Vol 22 (7) ◽  
pp. 3468
Author(s):  
Chrisanne Dsouza ◽  
Svetlana V Komarova

P2Y13 is an ADP-stimulated G-protein coupled receptor implicated in many physiological processes, including neurotransmission, metabolism, pain, and bone homeostasis. Quantitative understanding of P2Y13 activation dynamics is important for translational studies. We systematically identified PubMed annotated studies that characterized concentration-dependence of P2Y13 responses to natural and synthetic agonists. Since the comparison of the efficacy (maximum response) is difficult for studies performed in different systems, we normalized the data and conducted a meta-analysis of EC50 (concentration at half-maximum response) and Hill coefficient (slope) of P2Y13-mediated responses to different agonists. For signaling events induced by heterologously expressed P2Y13, EC50 of ADP-like agonists was 17.2 nM (95% CI: 7.7–38.5), with Hills coefficient of 4.4 (95% CI: 3.3–5.4), while ATP-like agonists had EC50 of 0.45 μM (95% CI: 0.06–3.15). For functional responses of endogenously expressed P2Y13, EC50 of ADP-like agonists was 1.76 μM (95% CI: 0.3–10.06). The EC50 of ADP-like agonists was lower for the brain P2Y13 than the blood P2Y13. ADP-like agonists were also more potent for human P2Y13 compared to rodent P2Y13. Thus, P2Y13 appears to be the most ADP-sensitive receptor characterized to date. The detailed understanding of tissue- and species-related differences in the P2Y13 response to ADP will improve the selectivity and specificity of future pharmacological compounds.

2021 ◽  
Author(s):  
Bettina Lengger ◽  
Emma E. Hoch-Schneider ◽  
Christina Noerskov ◽  
Tadas Jakociunas ◽  
Emil D. Jensen ◽  
...  

Serotonin is a key neurotransmitter involved in numerous physiological processes and serves as an important precursor for manufacturing bioactive indoleamines and alkaloids used in the treatment of human pathologies. In humans, serotonin sensing and signaling can occur by 12 G protein-coupled receptors (GPCRs) coupled to G proteins. To systematically assess serotonin GPCR signaling, we characterized reporter gene expression of a 144-sized library encoding all 12 human serotonin GPCRs in combination with 12 different Gα proteins in yeast exposed to serotonin. For the 5-HT4 receptor, we observe 25- and 64-fold changes in EC50 values and dynamic reporter gene outputs, respectively. Furthermore, we show that optimal biosensing designs enable high-resolution sensing of serotonin produced in yeast, as well as provide a platform for characterization of 19 serotonin GPCR polymorphisms found in human populations. Taken together, our study highlights serotonin biosensing modalities of relevance to both biotechnological and human health applications.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 415
Author(s):  
Aurelio A. Moya-García ◽  
Almudena Pino-Ángeles ◽  
Francisca Sánchez-Jiménez ◽  
José Luis Urdiales ◽  
Miguel Ángel Medina

Histamine is a highly pleiotropic biogenic amine involved in key physiological processes including neurotransmission, immune response, nutrition, and cell growth and differentiation. Its effects, sometimes contradictory, are mediated by at least four different G-protein coupled receptors, which expression and signalling pathways are tissue-specific. Histamine metabolism conforms a very complex network that connect many metabolic processes important for homeostasis, including nitrogen and energy metabolism. This review brings together and analyses the current information on the relationships of the “histamine system” with other important metabolic modules in human physiology, aiming to bridge current information gaps. In this regard, the molecular characterization of the role of histamine in the modulation of angiogenesis-mediated processes, such as cancer, makes a promising research field for future biomedical advances.


2019 ◽  
Vol 25 (26) ◽  
pp. 2892-2905 ◽  
Author(s):  
Sumit Jamwal ◽  
Ashish Mittal ◽  
Puneet Kumar ◽  
Dana M. Alhayani ◽  
Amal Al-Aboudi

Adenosine is a naturally occurring nucleoside and an essential component of the energy production and utilization systems of the body. Adenosine is formed by the degradation of adenosine-triphosphate (ATP) during energy-consuming processes. Adenosine regulates numerous physiological processes through activation of four subtypes of G-protein coupled membrane receptors viz. A1, A2A, A2B and A3. Its physiological importance depends on the affinity of these receptors and the extracellular concentrations reached. ATP acts as a neurotransmitter in both peripheral and central nervous systems. In the peripheral nervous system, ATP is involved in chemical transmission in sensory and autonomic ganglia, whereas in central nervous system, ATP, released from synaptic terminals, induces fast excitatory postsynaptic currents. ATP provides the energetics for all muscle movements, heart beats, nerve signals and chemical reactions inside the body. Adenosine has been traditionally considered an inhibitor of neuronal activity and a regulator of cerebral blood flow. Since adenosine is neuroprotective against excitotoxic and metabolic dysfunctions observed in neurological and ocular diseases, the search for adenosinerelated drugs regulating adenosine transporters and receptors can be important for advancement of therapeutic strategies against these diseases. This review will summarize the therapeutic potential and recent SAR and pharmacology of adenosine and its receptor agonists and antagonists.


Author(s):  
Lili Pan ◽  
Yu Ma ◽  
Yunchun Li ◽  
Haoxing Wu ◽  
Rui Huang ◽  
...  

Abstract:: Recent studies have proven that the purinergic signaling pathway plays a key role in neurotransmission and neuromodulation, and is involved in various neurodegenerative diseases and psychiatric disorders. With the characterization of the subtypes of receptors in purinergic signaling, i.e. the P1 (adenosine), P2X (ion channel) and P2Y (G protein-coupled), more attentions were paid to the pathophysiology and therapeutic potential of purinergic signaling in central nervous system disorders. Alzheimer’s disease (AD) is a progressive and deadly neurodegenerative disease that is characterized by memory loss, cognitive impairment and dementia. However, as drug development aimed to prevent or control AD follows a series of failures in recent years, more researchers focused on the neuroprotection-related mechanisms such as purinergic signaling in AD patients to find a potential cure. This article reviews the recent discoveries of purinergic signaling in AD, summaries the potential agents as modulators for the receptors of purinergic signaling in AD related research and treatments. Thus, our paper provided an insight for purinergic signaling in the development of anti-AD therapies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alejandro Garcia ◽  
M. Estrella Santamaria ◽  
Isabel Diaz ◽  
Manuel Martinez

AbstractThe success in the response of a plant to a pest depends on the regulatory networks that connect plant perception and plant response. Meta-analyses of transcriptomic responses are valuable tools to discover novel mechanisms in the plant/herbivore interplay. Considering the quantity and quality of available transcriptomic analyses, Arabidopsis thaliana was selected to test the ability of comprehensive meta-analyses to disentangle plant responses. The analysis of the transcriptomic data showed a general induction of biological processes commonly associated with the response to herbivory, like jasmonate signaling or glucosinolate biosynthesis. However, an uneven induction of many genes belonging to these biological categories was found, which was likely associated with the particularities of each specific Arabidopsis-herbivore interaction. A thorough analysis of the responses to the lepidopteran Pieris rapae and the spider mite Tetranychus urticae highlighted specificities in the perception and signaling pathways associated with the expression of receptors and transcription factors. This information was translated to a variable alteration of secondary metabolic pathways. In conclusion, transcriptomic meta-analysis has been revealed as a potent way to sort out relevant physiological processes in the plant response to herbivores. Translation of these transcriptomic-based analyses to crop species will permit a more appropriate design of biotechnological programs.


2021 ◽  
pp. 247255522097979
Author(s):  
Kyung-Soon Lee ◽  
Edelmar Navaluna ◽  
Nicole M. Marsh ◽  
Eric M. Janezic ◽  
Chris Hague

We have developed a novel reporter assay that leverages SNAP-epitope tag/near-infrared (NIR) imaging technology to monitor G protein-coupled receptor (GPCR) degradation in human cell lines. N-terminal SNAP-tagged GPCRs were subcloned and expressed in human embryonic kidney (HEK) 293 cells and then subjected to 24 h of cycloheximide (CHX)-chase degradation assays to quantify receptor degradation half-lives ( t1/2) using LICOR NIR imaging–polyacrylamide gel electrophoresis (PAGE) analysis. Thus far, we have used this method to quantify t1/2 for all nine adrenergic (ADRA1A, ADRA1B, ADRA1D, ADRA2A, ADRA2B, ADRA2C, ADRB1, ADRB2, ADRB3), five somatostatin (SSTR1, SSTR2, SSTR3, SSTR4, SSTR5), four chemokine (CXCR1, CXCR2, CXCR3, CXCR5), and three 5-HT2 (5HT2A, 5HT2B, 5HT2C) receptor subtypes. SNAP-GPCR-CHX degradation t1/2 values ranged from 0.52 h (ADRA1D) to 5.5 h (SSTR3). On the contrary, both the SNAP-tag alone and SNAP-tagged and endogenous β-actin were resistant to degradation with CHX treatment. Treatment with the proteasome inhibitor bortezomib produced significant but variable increases in SNAP-GPCR protein expression levels, indicating that SNAP-GPCR degradation primarily occurs through the proteasome. Remarkably, endogenous β2-adrenergic receptor/ADRB2 dynamic mass redistribution functional responses to norepinephrine were significantly decreased following CHX treatment, with a time course equivalent to that observed with the SNAP-ADRB2 degradation assay. We subsequently adapted this assay into a 96-well glass-bottom plate format to facilitate high-throughput GPCR degradation screening. t1/2 values quantified for the α1-adrenergic receptor subtypes (ADRA1A, ADRA1B, ADR1D) using the 96-well-plate format correlated with t1/2 values quantified using NIR-PAGE imaging analysis. In summary, this novel assay permits precise quantitative analysis of GPCR degradation in human cells and can be readily adapted to quantify degradation for any membrane protein of interest.


Author(s):  
Maryam Mosavat ◽  
Aisling Smyth ◽  
Diana Arabiat ◽  
Lisa Whitehead

AbstractVitamin D contributes to numerous physiological processes within the body but primarily calcium and bone homeostasis. Emerging evidence highlights a novel role for vitamin D in maintaining and regulating optimal sleep. Sleep is a known regulator of bone health, highlighting the interconnectedness between vitamin D concentrations, sleep duration and bone metabolism. It is possible that the relationship between sleep length and vitamin D is bidirectional, with vitamin D playing a role in sleep health and conversely, sleep affecting vitamin D levels. Nevertheless, limited information on the direction of the interaction is available, and much remains to be learned concerning the complex relationship between insufficient sleep duration and vitamin D deficiency. Given the potential to implement interventions to improve sleep and vitamin D supplementation, understanding this relationship further could represent a novel way to support and improve health.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4312
Author(s):  
Benjamin Lefranc ◽  
Karima Alim ◽  
Cindy Neveu ◽  
Olivier Le Marec ◽  
Christophe Dubessy ◽  
...  

26RFa is a neuropeptide that activates the rhodopsin-like G protein-coupled receptor QRFPR/GPR103. This peptidergic system is involved in the regulation of a wide array of physiological processes including feeding behavior and glucose homeostasis. Herein, the pharmacological profile of a homogenous library of QRFPR-targeting peptide derivatives was investigated in vitro on human QRFPR-transfected cells with the aim to provide possible insights into the structural determinants of the Phe residues to govern receptor activation. Our work advocates to include in next generations of 26RFa(20–26)-based QRFPR agonists effective substitutions for each Phe unit, i.e., replacement of the Phe22 residue by a constrained 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid moiety, and substitution of both Phe24 and Phe26 by their para-chloro counterpart. Taken as a whole, this study emphasizes that optimized modifications in the C-terminal part of 26RFa are mandatory to design selective and potent peptide agonists for human QRFPR.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuya Yoshida ◽  
Naoya Matsunaga ◽  
Takaharu Nakao ◽  
Kengo Hamamura ◽  
Hideaki Kondo ◽  
...  

AbstractDysfunction of the circadian clock has been implicated in the pathogenesis of cardiovascular disease. The CLOCK protein is a core molecular component of the circadian oscillator, so that mice with a mutated Clock gene (Clk/Clk) exhibit abnormal rhythms in numerous physiological processes. However, here we report that chronic kidney disease (CKD)-induced cardiac inflammation and fibrosis are attenuated in Clk/Clk mice even though they have high blood pressure and increased serum angiotensin II levels. A search for the underlying cause of the attenuation of heart disorder in Clk/Clk mice with 5/6 nephrectomy (5/6Nx) led to identification of the monocytic expression of G protein-coupled receptor 68 (GPR68) as a risk factor of CKD-induced inflammation and fibrosis of heart. 5/6Nx induces the expression of GPR68 in circulating monocytes via altered CLOCK activation by increasing serum levels of retinol and its binding protein (RBP4). The high-GPR68-expressing monocytes have increased potential for producing inflammatory cytokines, and their cardiac infiltration under CKD conditions exacerbates inflammation and fibrosis of heart. Serum retinol and RBP4 levels in CKD patients are also sufficient to induce the expression of GPR68 in human monocytes. Our present study reveals an uncovered role of monocytic clock genes in CKD-induced heart failure.


Sign in / Sign up

Export Citation Format

Share Document