scholarly journals Circulating 4-F4t-Neuroprostane and 10-F4t-Neuroprostane Are Related to MECP2 Gene Mutation and Natural History in Rett Syndrome

2021 ◽  
Vol 22 (8) ◽  
pp. 4240
Author(s):  
Cinzia Signorini ◽  
Silvia Leoncini ◽  
Thierry Durand ◽  
Jean-Marie Galano ◽  
Alexandre Guy ◽  
...  

Neuroprostanes, a family of non-enzymatic metabolites of the docosahexaenoic acid, have been suggested as potential biomarkers for neurological diseases. Objective biological markers are strongly needed in Rett syndrome (RTT), which is a progressive X-linked neurodevelopmental disorder that is mainly caused by mutations in the methyl-CpG binding protein 2 (MECP2) gene with a predominant multisystemic phenotype. The aim of the study is to assess a possible association between MECP2 mutations or RTT disease progression and plasma levels of 4(RS)-4-F4t-neuroprostane (4-F4t-NeuroP) and 10(RS)-10-F4t-neuroprostane (10-F4t-NeuroP) in typical RTT patients with proven MECP2 gene mutation. Clinical severity and disease progression were assessed using the Rett clinical severity scale (RCSS) in n = 77 RTT patients. The 4-F4t-NeuroP and 10-F4t-NeuroP molecules were totally synthesized and used to identify the contents of the plasma of the patients. Neuroprostane levels were related to MECP2 mutation category (i.e., early truncating, gene deletion, late truncating, and missense), specific hotspot mutations (i.e., R106W, R133C, R168X, R255X, R270X, R294X, R306C, and T158M), and disease stage (II through IV). Circulating 4-F4t-NeuroP and 10-F4t-NeuroP were significantly related to (i) the type of MECP2 mutations where higher levels were associated to gene deletions (p ≤ 0.001); (ii) severity of common hotspot MECP2 mutation (large deletions, R168X, R255X, and R270X); (iii) disease stage, where higher concentrations were observed at stage II (p ≤ 0.002); and (iv) deficiency in walking (p ≤ 0.0003). This study indicates the biological significance of 4-F4t-NeuroP and 10-F4t-NeuroP as promising molecules to mark the disease progression and potentially gauge genotype–phenotype associations in RTT.

Author(s):  
Julie Gauthier ◽  
Giovana de Amorim ◽  
Gevork N. Mnatzakanian ◽  
Carol Saunders ◽  
John B. Vincent ◽  
...  

ABSTRACT:Background:Rett syndrome (RTT) is a severe neurodevelopmental disorder of girls, caused by mutations in the X-linked MECP2 gene. Worldwide recognition of the RTT clinical phenotype in the early 1980's allowed many cases to be diagnosed, and established RTT as one of the most common mental retardation syndromes in females. The years since then led to a refinement of the phenotype and the recent elaboration of Revised Diagnostic Criteria (RDC). Here, we study the impact of the presence versus the absence of the use of diagnostic criteria from the RDC to make a diagnosis of RTT on MECP2 mutation detection in Canadian patients diagnosed and suspected of having RTT.Methods:Using dHPLC followed by sequencing in all exons of the MECP2 gene, we compared mutation detection in a historic cohort of 35 patients diagnosed with RTT without the use of specific diagnostic criteria to a separate more recent group of 101 patients included on the basis of strict fulfillment of the RDC.Results:The MECP2 mutation detection rate was much higher in subjects diagnosed using a strict adherence to the RDC (20% vs. 72%).Conclusions:These results suggest that clinical diagnostic procedures significantly influence the rate of mutation detection in RTT, and more generally emphasize the importance of diagnostic tools in the assessment of neurobehavioral syndromes.


2004 ◽  
Vol 19 (7) ◽  
pp. 503-508 ◽  
Author(s):  
Jong Hee Chae ◽  
Hee Hwang ◽  
Yong Seung Hwang ◽  
Hee Jung Cheong ◽  
Ki Joong Kim

Metabolites ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 221 ◽  
Author(s):  
Cappuccio ◽  
Donti ◽  
Pinelli ◽  
Bernardo ◽  
Bravaccio ◽  
...  

Rett syndrome is a severe neurodevelopmental disorder affecting mostly females and is caused by loss-of-function mutations in the MECP2 gene that encoded the methyl-CpG-binding protein 2. The pathogenetic mechanisms of Rett syndrome are not completely understood and metabolic derangements are emerging as features of Rett syndrome. We performed a semi-quantitative tandem mass spectrometry-based analysis that measured over 900 metabolites on blood samples from 14 female subjects with Rett syndrome carrying MECP2 mutations. The metabolic profiling revealed alterations in lipids, mostly involved in sphingolipid metabolism, and sphinganine/sphingosine, that are known to have a neurotrophic role. Further investigations are required to understand the mechanisms underlying such perturbations and their significance in the disease pathogenesis. Nevertheless, these metabolites are attractive for studies on the disease pathogenesis and as potential disease biomarkers.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Javier Flores Gutiérrez ◽  
Claudio De Felice ◽  
Giulia Natali ◽  
Silvia Leoncini ◽  
Cinzia Signorini ◽  
...  

Abstract Background Rett syndrome (RTT), an X-linked neurodevelopmental rare disease mainly caused by MECP2-gene mutations, is a prototypic intellectual disability disorder. Reversibility of RTT-like phenotypes in an adult mouse model lacking the Mecp2-gene has given hope of treating the disease at any age. However, adult RTT patients still urge for new treatments. Given the relationship between RTT and monoamine deficiency, we investigated mirtazapine (MTZ), a noradrenergic and specific-serotonergic antidepressant, as a potential treatment. Methods Adult heterozygous-Mecp2 (HET) female mice (6-months old) were treated for 30 days with 10 mg/kg MTZ and assessed for general health, motor skills, motor learning, and anxiety. Motor cortex, somatosensory cortex, and amygdala were analyzed for parvalbumin expression. Eighty RTT adult female patients harboring a pathogenic MECP2 mutation were randomly assigned to treatment to MTZ for insomnia and mood disorders (mean age = 23.1 ± 7.5 years, range = 16–47 years; mean MTZ-treatment duration = 1.64 ± 1.0 years, range = 0.08–5.0 years). Rett clinical severity scale (RCSS) and motor behavior assessment scale (MBAS) were retrospectively analyzed. Results In HET mice, MTZ preserved motor learning from deterioration and normalized parvalbumin levels in the primary motor cortex. Moreover, MTZ rescued the aberrant open-arm preference behavior observed in HET mice in the elevated plus-maze (EPM) and normalized parvalbumin expression in the barrel cortex. Since whisker clipping also abolished the EPM-related phenotype, we propose it is due to sensory hypersensitivity. In patients, MTZ slowed disease progression or induced significant improvements for 10/16 MBAS-items of the M1 social behavior area: 4/7 items of the M2 oro-facial/respiratory area and 8/14 items of the M3 motor/physical signs area. Conclusions This study provides the first evidence that long-term treatment of adult female heterozygous Mecp2tm1.1Bird mice and adult Rett patients with the antidepressant mirtazapine is well tolerated and that it protects from disease progression and improves motor, sensory, and behavioral symptoms.


2015 ◽  
Vol 2015 ◽  
pp. 1-18 ◽  
Author(s):  
Silvia Leoncini ◽  
Claudio De Felice ◽  
Cinzia Signorini ◽  
Gloria Zollo ◽  
Alessio Cortelazzo ◽  
...  

An involvement of the immune system has been suggested in Rett syndrome (RTT), a devastating neurodevelopmental disorder related to oxidative stress, and caused by a mutation in the methyl-CpG binding protein 2 gene (MECP2) or, more rarely, cyclin-dependent kinase-like 5 (CDKL5). To date, it is unclear whether both mutations may have an impact on the circulating cytokine patterns. In the present study, cytokines involved in the Th1-, Th2-, and T regulatory (T-reg) response, as well as chemokines, were investigated inMECP2- (MECP2-RTT) (n=16) andCDKL5-Rett syndrome (CDKL5-RTT) (n=8), before and afterω-3 polyunsaturated fatty acids (PUFAs) supplementation. A major cytokine dysregulation was evidenced in untreated RTT patients. InMECP2-RTT, a Th2-shifted balance was evidenced, whereas inCDKL5-RTT both Th1- and Th2-related cytokines (except for IL-4) were upregulated. InMECP2-RTT, decreased levels of IL-22 were observed, whereas increased IL-22 and T-reg cytokine levels were evidenced inCDKL5-RTT. Chemokines were unchanged. The cytokine dysregulation was proportional to clinical severity, inflammatory status, and redox imbalance. Omega-3 PUFAs partially counterbalanced cytokine changes, as well as aberrant redox homeostasis and the inflammatory status. RTT is associated with a subclinical immune dysregulation as the likely consequence of a defective inflammation regulatory signaling system.


2017 ◽  
Vol 32 (8) ◽  
pp. 694-703 ◽  
Author(s):  
Marwa Kharrat ◽  
Yosra Kamoun ◽  
Fatma Kamoun ◽  
Emna Ellouze ◽  
Marwa Maalej ◽  
...  

Rett syndrome is an X-linked neurodevelopmental disorder, primarily caused by MECP2 mutations. In this study, clinical, molecular and bioinformatics analyses were performed in Rett patients to understand the relationship between MECP2 mutation type and the clinical severity. Two double MeCP2 mutations were detected: a novel one (p.G185 V in cis with p.R255X) in P1 and a known one (p.P179 S in cis with p.R255X) in P2. Besides, a novel synonymous mutation (c.807C>T; p.G269G), which could affect mRNA splicing, was identified in P3. The results from clinical severity analysis have shown that P1 was more severely affected than P2 with CSS being 35 and 14, respectively. Therefore, the phenotypic variability in P1 and P2 could be explained by the potential pathogenic effect of the RTT-causing missense mutation p.G185 V in the AT-hook1. In conclusion, clinical, molecular, and in silico investigations in the studied patients have been proven to be substantial for the genotype-phenotype correlation.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Giorgio Pini ◽  
Laura Congiu ◽  
Alberto Benincasa ◽  
Pietro DiMarco ◽  
Stefania Bigoni ◽  
...  

Rett Syndrome (RTT) is a severe neurodevelopmental disorder characterized by an apparently normal development followed by an arrest and subsequent regression of cognitive and psychomotor abilities. At present, RTT has no definitive cure and the treatment of RTT represents a largely unmet clinical need. Following partial elucidation of the underlying neurobiology of RTT, a new treatment has been proposed, Mecasermin (recombinant human Insulin-Like Growth Factor 1), which, in addition to impressive evidence from preclinical murine models of RTT, has demonstrated safety in human studies of patients with RTT. The present clinical study examines the disease severity as assessed by clinicians (International Scoring System: ISS), social and cognitive ability assessed by two blinded, independent observers (RSS: Rett Severity Score), and changes in brain activity (EEG) parameters of ten patients with classic RTT and ten untreated patients matched for age and clinical severity. Significant improvement in both the ISS (p=0.0106) and RSS (p=0.0274) was found in patients treated with IGF1 in comparison to untreated patients. Analysis of the novel RSS also suggests that patients treated with IGF1 have a greater endurance to social and cognitive testing. The present clinical study adds significant preliminary evidence for the use of IGF-1 in the treatment of RTT and other disorders of the autism spectrum.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Alessio Cortelazzo ◽  
Claudio De Felice ◽  
Roberto Guerranti ◽  
Cinzia Signorini ◽  
Silvia Leoncini ◽  
...  

Inflammation has been advocated as a possible common central mechanism for developmental cognitive impairment. Rett syndrome (RTT) is a devastating neurodevelopmental disorder, mainly caused byde novoloss-of-function mutations in the gene encoding MeCP2. Here, we investigated plasma acute phase response (APR) in stage II (i.e., “pseudo-autistic”) RTT patients by routine haematology/clinical chemistry and proteomic 2-DE/MALDI-TOF analyses as a function of four majorMECP2gene mutation types (R306C, T158M, R168X, and large deletions). Elevated erythrocyte sedimentation rate values (median 33.0 mm/h versus 8.0 mm/h,P<0.0001) were detectable in RTT, whereas C-reactive protein levels were unchanged (P=0.63). The 2-DE analysis identified significant changes for a total of 17 proteins, the majority of which were categorized as APR proteins, either positive (n=6spots) or negative (n=9spots), and to a lesser extent as proteins involved in the immune system (n=2spots), with some proteins having overlapping functions on metabolism (n=7spots). The number of protein changes was proportional to the severity of the mutation. Our findings reveal for the first time the presence of a subclinical chronic inflammatory status related to the “pseudo-autistic” phase of RTT, which is related to the severity carried by theMECP2gene mutation.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Kari Neier ◽  
Tianna E. Grant ◽  
Rebecca L. Palmer ◽  
Demario Chappell ◽  
Sophia M. Hakam ◽  
...  

AbstractRett syndrome (RTT) is a regressive neurodevelopmental disorder in girls, characterized by multisystem complications including gut dysbiosis and altered metabolism. While RTT is known to be caused by mutations in the X-linked gene MECP2, the intermediate molecular pathways of progressive disease phenotypes are unknown. Mecp2 deficient rodents used to model RTT pathophysiology in most prior studies have been male. Thus, we utilized a patient-relevant mouse model of RTT to longitudinally profile the gut microbiome and metabolome across disease progression in both sexes. Fecal metabolites were altered in Mecp2e1 mutant females before onset of neuromotor phenotypes and correlated with lipid deficiencies in brain, results not observed in males. Females also displayed altered gut microbial communities and an inflammatory profile that were more consistent with RTT patients than males. These findings identify new molecular pathways of RTT disease progression and demonstrate the relevance of further study in female Mecp2 animal models.


Sign in / Sign up

Export Citation Format

Share Document