scholarly journals Carbon Dots-Mediated Fluorescent Scaffolds: Recent Trends in Image-Guided Tissue Engineering Applications

2021 ◽  
Vol 22 (10) ◽  
pp. 5378
Author(s):  
Mohan Vedhanayagam ◽  
Iruthayapandi Selestin Raja ◽  
Anara Molkenova ◽  
Timur Sh. Atabaev ◽  
Kalarical Janardhanan Sreeram ◽  
...  

Regeneration of damaged tissues or organs is one of the significant challenges in tissue engineering and regenerative medicine. Many researchers have fabricated various scaffolds to accelerate the tissue regeneration process. However, most of the scaffolds are limited in clinical trials due to scaffold inconsistency, non-biodegradability, and lack of non-invasive techniques to monitor tissue regeneration after implantation. Recently, carbon dots (CDs) mediated fluorescent scaffolds are widely explored for the application of image-guided tissue engineering due to their controlled architecture, light-emitting ability, higher chemical and photostability, excellent biocompatibility, and biodegradability. In this review, we provide an overview of the recent advancement of CDs in terms of their different synthesis methods, tunable physicochemical, mechanical, and optical properties, and their application in tissue engineering. Finally, this review concludes the further research directions that can be explored to apply CDs in tissue engineering.

2008 ◽  
Vol 14 (7) ◽  
pp. 1195-1202 ◽  
Author(s):  
Jeffrey J. Ballyns ◽  
Jason P. Gleghorn ◽  
Vicki Niebrzydowski ◽  
Jeremy J. Rawlinson ◽  
Hollis G. Potter ◽  
...  

2009 ◽  
Vol 13 (8a) ◽  
pp. 1428-1436 ◽  
Author(s):  
Jeffrey J. Ballyns ◽  
Lawrence J. Bonassar

Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2261
Author(s):  
Sheila Maiz-Fernández ◽  
Leyre Pérez-Álvarez ◽  
Leire Ruiz-Rubio ◽  
Jose Luis Vilas-Vilela ◽  
Senentxu Lanceros-Mendez

In situ hydrogels have attracted increasing interest in recent years due to the need to develop effective and practical implantable platforms. Traditional hydrogels require surgical interventions to be implanted and are far from providing personalized medicine applications. However, in situ hydrogels offer a wide variety of advantages, such as a non-invasive nature due to their localized action or the ability to perfectly adapt to the place to be replaced regardless the size, shape or irregularities. In recent years, research has particularly focused on in situ hydrogels based on natural polysaccharides due to their promising properties such as biocompatibility, biodegradability and their ability to self-repair. This last property inspired in nature gives them the possibility of maintaining their integrity even after damage, owing to specific physical interactions or dynamic covalent bonds that provide reversible linkages. In this review, the different self-healing mechanisms, as well as the latest research on in situ self-healing hydrogels, is presented, together with the potential applications of these materials in tissue regeneration.


2020 ◽  
Vol 48 (3) ◽  
pp. 755-764
Author(s):  
Benjamin B. Rothrauff ◽  
Rocky S. Tuan

Bone possesses an intrinsic regenerative capacity, which can be compromised by aging, disease, trauma, and iatrogenesis (e.g. tumor resection, pharmacological). At present, autografts and allografts are the principal biological treatments available to replace large bone segments, but both entail several limitations that reduce wider use and consistent success. The use of decellularized extracellular matrices (ECM), often derived from xenogeneic sources, has been shown to favorably influence the immune response to injury and promote site-appropriate tissue regeneration. Decellularized bone ECM (dbECM), utilized in several forms — whole organ, particles, hydrogels — has shown promise in both in vitro and in vivo animal studies to promote osteogenic differentiation of stem/progenitor cells and enhance bone regeneration. However, dbECM has yet to be investigated in clinical studies, which are needed to determine the relative efficacy of this emerging biomaterial as compared with established treatments. This mini-review highlights the recent exploration of dbECM as a biomaterial for skeletal tissue engineering and considers modifications on its future use to more consistently promote bone regeneration.


2018 ◽  
Author(s):  
Murtaza Kaderi ◽  
Mohsin Ali ◽  
Alfiya Ali ◽  
Tasneem Kaderi

The goals of periodontal therapy are to arrest of periodontal disease progression and to attain the regeneration of the periodontal apparatus. Osseous grafting and Guided tissue regeneration (GTR) are the two techniques with the most extensive documentation of periodontal regeneration. However, these techniques offer limited potential towards regenerating the periodontal tissues. Recent surgical procedures and application of newer materials aim at greater and more predictable regeneration with the concept of tissue engineering for enhanced periodontal regeneration and functional attachment have been developed, analyzed, and employed in clinical practice


2019 ◽  
Vol 19 (2) ◽  
pp. 105-111
Author(s):  
Nadia Shafei ◽  
Mohammad Saeed Hakhamaneshi ◽  
Massoud Houshmand ◽  
Siavash Gerayeshnejad ◽  
Fardin Fathi ◽  
...  

Background: Beta thalassemia is a common disorder with autosomal recessive inheritance. The most prenatal diagnostic methods are the invasive techniques that have the risk of miscarriage. Now the non-invasive methods will be gradually alternative for these invasive techniques. Objective: The aim of this study is to evaluate and compare the diagnostic value of two non-invasive diagnostic methods for fetal thalassemia using cell free fetal DNA (cff-DNA) and nucleated RBC (NRBC) in one sampling community. Methods: 10 ml of blood was taken in two k3EDTA tube from 32 pregnant women (mean of gestational age = 11 weeks), who themselves and their husbands had minor thalassemia. One tube was used to enrich NRBC and other was used for cff-DNA extraction. NRBCs were isolated by MACS method and immunohistochemistry; the genome of stained cells was amplified by multiple displacement amplification (MDA) procedure. These products were used as template in b-globin segments PCR. cff-DNA was extracted by THP method and 300 bp areas were recovered from the agarose gel as fetus DNA. These DNA were used as template in touch down PCR to amplify b-globin gen. The amplified b-globin segments were sequenced and the results compared with CVS resul. Results: The data showed that sensitivity and specificity of thalassemia diagnosis by NRBC were 100% and 92% respectively and sensitivity and specificity of thalassemia diagnosis by cff-DNA were 100% and 84% respectively. Conclusion: These methods with high sensitivity can be used as screening test but due to their lower specificity than CVS, they cannot be used as diagnostic test.


2020 ◽  
Vol 16 (2) ◽  
pp. 138-152
Author(s):  
Bingren Zhang ◽  
Chu Wang ◽  
Chanchan Shen ◽  
Wei Wang

Background: Responses to external emotional-stimuli or their transitions might help to elucidate the scientific background and assist the clinical management of psychiatric problems, but pure emotional-materials and their utilization at different levels of neurophysiological processing are few. Objective: We aimed to describe the responses at central and peripheral levels in healthy volunteers and psychiatric patients when facing external emotions and their transitions. Methods: Using pictures and sounds with pure emotions of Disgust, Erotica, Fear, Happiness, Neutral, and Sadness or their transitions as stimuli, we have developed a series of non-invasive techniques, i.e., the event-related potentials, functional magnetic resonance imaging, excitatory and inhibitory brainstem reflexes, and polygraph, to assess different levels of neurophysiological responses in different populations. Results: Sample outcomes on various conditions were specific and distinguishable at cortical to peripheral levels in bipolar I and II disorder patients compared to healthy volunteers. Conclusions: Methodologically, designs with these pure emotions and their transitions are applicable, and results per se are specifically interpretable in patients with emotion-related problems.


2021 ◽  
Vol 9 (10) ◽  
pp. 3901-3908
Author(s):  
Fanyong Yan ◽  
Hao Zhang ◽  
Jinxia Xu ◽  
Yawei Wu ◽  
Yueyan Zang ◽  
...  

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Andy Sombke ◽  
Carsten H. G. Müller

Abstract Background The jointed appendage is a key novelty in arthropod evolution and arthropod legs are known to vary enormously in relation to function. Among centipedes, the ultimate legs always are distinctly different from locomotory legs, and different centipede taxa evolved different structural and functional modifications. In Geophilomorpha (soil centipedes), ultimate legs do not participate in locomotion and were interpret to serve a sensory function. They can be sexually dimorphic and in some species, male ultimate legs notably appear “hairy”. It can be assumed that the high abundance of sensilla indicates a pronounced sensory function. This study seeks for assessing the sensory diversity, however, documents the surprising and unique case of an extensive glandular epithelium in the ultimate legs of three phylogenetically distant species. Results The tightly aggregated epidermal glands with stalked ducts – mistakenly thought to be sensilla – were scrutinized using a multimodal microscopic approach comprising histology as well as scanning and transmission electron microscopy in Haplophilus subterraneus. Hence, this is the first detailed account on centipede ultimate legs demonstrating an evolutionary transformation into a “secretory leg”. Additionally, we investigated sensory structures as well as anatomical features using microCT analysis. Contrary to its nomination as a tarsus, tarsus 1 possesses intrinsic musculature, which is an indication that this podomere might be a derivate of the tibia. Discussion The presence and identity of ultimate leg associated epidermal glands with stalked ducts is a new discovery for myriapods. A pronounced secretory as well as moderate sensory function in Haplophilus subterraneus can be concluded. The set of characters will improve future taxonomic studies, to test the hypotheses whether the presence of these specialized glands is a common feature in Geophilomorpha, and that tarsus 1 may be a derivate of the tibia. As the number of epidermal glands with stalked ducts is sexually dimorphic, their function might be connected to reproduction or a sex-specific defensive role. Our results, in particular the unexpected discovery of ‘glandular hairs’, may account for a striking example for how deceptive morphological descriptions of epidermal organs may be, if based on non-invasive techniques alone.


Sign in / Sign up

Export Citation Format

Share Document