scholarly journals Potency Assessment of Dendritic Cell Anticancer Vaccine: Validation of the Co-Flow DC Assay

2021 ◽  
Vol 22 (11) ◽  
pp. 5824
Author(s):  
Silvia Carloni ◽  
Claudia Piccinini ◽  
Elena Pancisi ◽  
Valentina Soldati ◽  
Monica Stefanelli ◽  
...  

For many years, oncological clinical trials have taken advantage of dendritic cells (DC) for the design of DC-based cellular therapies. This has required the design of suitable quality control assays to evaluate the potency of these products. The purpose of our work was to develop and validate a novel bioassay that uses flow cytometry as a read-out measurement. In this method, CD3+ cells are labeled with a fluorescent dye and the DC costimulatory activity is measured by the degree of T cell proliferation caused by the DC–T cell interaction. The validation of the method was achieved by the evaluation of essential analytical parameters defined by international guidelines. Our results demonstrated that the method could be considered specific, selective, and robust. The comparison between measured values and estimated true values confirmed a high level of accuracy and a lack of systematic error. Repeated experiments have shown the reproducibility of the assay and the proportionality between the potency and the DC amount has proven its linearity. Our results suggest that the method is compliant with the guidelines and could be adopted as a quality control assay or batch-release testing within GMP facilities.

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Mengyao Jin ◽  
Peng Liu

Introduction: Dendritic cells (DCs) that are known as professional antigen-presenting cells have been found to pre-locate in non-inflammatory arterial wall and increasingly accumulate during atherosclerosis progression. Previous findings suggested that residential DCs in the intima are responsible for capturing modified lipids and forming foam cells during the initiation of atherosclerosis. Hypothesis: DC accumulation and enhanced DC-T cell interaction play a critical role in the initiation of atherosclerosis. Methods: We measured plaque formation, vascular DC accumulation and antigen-specific T cell proliferation mediated by isolated aortic cells in ApoE-/- mice, as well as DTR-CD11c/ApoE-/- or DTR-CD11b/ApoE-/- mice for conditional depletion of DCs or macrophages, respectively. A brief high-fat diet for 10 days was used as a model of initial atherosclerosis. Results: In addition to increased intimal DC accumulation and plaque formation in aortic roots, 10 days of HFD induced T cell infiltration in ApoE-/- mice, compared to those without HFD as the control. Isolated aortic cells from mice with 10-day HFD showed stronger capability in inducing antigen-specific T cell proliferation, compare to the control (HFD: 3.14±0.71%; no HFD: 1.56±0.36%; p=0.022). Single diphtheria toxin (DT) injection at day 1 yielded approximately 50% decrease in intimal DC accumulation, as well as 60% attenuation in plaque formation in DTR-CD11c/ApoE-/- mice after 10-day HFD. Capability of stimulating antigen-specific T cell proliferation was also impaired in aortic cells from DC-depleted mice (DT-treated: 1.62±0.30%; PBS-treated: 3.04±0.59%; p= 0.004), along with reduction in indirect conduction of T cell activation. In contrast, no significant changes were found in plaque formation and DC accumulation in DT-injected DTR-CD11b/ApoE-/- mice after 10 days of HFD, compared to control group. Furthermore, depletion of CD11b+ macrophages in either aortas or spleens didn’t alter capability of inducing antigen-specific T cell proliferation in DT-injected mice. Conclusions: These results suggested that vascular DCs rather than macrophages play a more important role in T cell activation and initiation of atherosclerosis.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yihua Cai ◽  
Michaela Prochazkova ◽  
Chunjie Jiang ◽  
Hannah W. Song ◽  
Jianjian Jin ◽  
...  

Abstract Background Chimeric antigen receptor (CAR) or T-cell receptor (TCR) engineered T-cell therapy has recently emerged as a promising adoptive immunotherapy approach for the treatment of hematologic malignancies and solid tumors. Multiparametric flow cytometry-based assays play a critical role in monitoring cellular manufacturing steps. Since manufacturing CAR/TCR T-cell products must be in compliance with current good manufacturing practices (cGMP), a standard or quality control for flow cytometry assays should be used to ensure the accuracy of flow cytometry results, but none is currently commercially available. Therefore, we established a procedure to generate an in-house cryopreserved CAR/TCR T-cell products for use as a flow cytometry quality control and validated their use. Methods Two CAR T-cell products: CD19/CD22 bispecific CAR T-cells and FGFR4 CAR T-cells and one TCR-engineered T-cell product: KK-LC-1 TCR T-cells were manufactured in Center for Cellular Engineering (CCE), NIH Clinical Center. The products were divided in aliquots, cryopreserved and stored in the liquid nitrogen. The cryopreserved flow cytometry quality controls were tested in flow cytometry assays which measured post-thaw viability, CD3, CD4 and CD8 frequencies as well as the transduction efficiency and vector identity. The long-term stability and shelf-life of cryopreserved quality control cells were evaluated. In addition, the sensitivity as well as the precision assay were also assessed on the cryopreserved quality control cells. Results After thawing, the viability of the cryopreserved CAR/TCR T-cell controls was found to be greater than 50%. The expression of transduction efficiency and vector identity markers by the cryopreserved control cells were stable for at least 1 year; with post-thaw values falling within ± 20% range of the values measured at time of cryopreservation. After thawing and storage at room temperature, the stability of these cryopreserved cells lasted at least 6 h. In addition, our cryopreserved CAR/TCR-T cell quality controls showed a strong correlation between transduction efficiency expression and dilution factors. Furthermore, the results of flow cytometric analysis of the cryopreserved cells among different laboratory technicians and different flow cytometry instruments were comparable, highlighting the reproducibility and reliability of these quality control cells. Conclusion We developed and validated a feasible and reliable procedure to establish a bank of cryopreserved CAR/TCR T-cells for use as flow cytometry quality controls, which can serve as a quality control standard for in-process and lot-release testing of CAR/TCR T-cell products.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Yanzhong Xin ◽  
Hongfei Cai ◽  
Tianyu Lu ◽  
Yan Zhang ◽  
Yue Yang ◽  
...  

Purpose. We examined the role of miR-20b in development of thymoma-associated myasthenia gravis, especially in T cell proliferation and activation.Materials and Methods. Using qRT-PCR, we assessed expression levels of miR-20b and its target genes in cultured cells and patient samples and examined the proliferation of cultured cells, using MTT cell proliferation assays and flow cytometry based cell cycle analysis. Activation of T cells was determined by both flow cytometry and qRT-PCR of activation-specific marker genes.Results. Expression of miR-20b was downregulated in samples of thymoma tissues and serum from patients with thymoma-associated myasthenia gravis. In addition, T cell proliferation and activation were inhibited by ectopic overexpression of miR-20b, which led to increased T cell proliferation and activation. NFAT5 and CAMTA1 were identified as targets of miR-20b. Expression levels of NFAT5 and CAMTA1 were inhibited by miR-20b expression in cultured cells, and the expression levels of miR-20b and NFAT5/CAMTA1 were inversely correlated in patients with thymoma-associated myasthenia gravis.Conclusion. miR-20b acts as a tumor suppressor in the development of thymoma and thymoma-associated myasthenia gravis. The tumor suppressive function of miR-20b in thymoma could be due to its inhibition of NFAT signaling by repression of NFAT5 and CAMTA1 expression.


2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Josiane Warszawski ◽  
Véronique Avettand-Fenoel ◽  
Christine Rouzioux ◽  
Daniel Scott-Algara ◽  
Thomas Montange ◽  
...  

Abstract Background Gag-specific T lymphocytes play a key role in the control of human immunodeficiency virus (HIV) replication. Their restoration will be important for future reservoir targeting strategies. In this study, we aimed to identify immune correlates of Gag-specific CD8 T-cell proliferation in youths with perinatally acquired HIV-1 infection. Methods The ANRS-EP38-IMMIP study included youths of 15 to 24 years of age. Fifty-three were taking combination anti-retroviral therapy and aviremic at the time of the study and had undergone valid 5-6-carboxyfluorescein diacetate succimidyl ester-based flow cytometry T-cell proliferation assays. Plasma analytes were quantified by enzyme-linked immunosorbent assay or multiplex assays. Peripheral blood cells were phenotyped by flow cytometry. Logistic regression was used to study the association between Gag-specific T-cell proliferation and immune markers. Results Patients with Gag-specific CD8 T-cell proliferation had higher levels of plasma transforming growth factor (TGF)-β1, a lower proportion of naive cells among regulatory T cells (Tregs), and higher percentages of CD4 and CD8 T cells expressing the α4β7 integrin or CD161 molecule than those without a Gag-specific response. These associations were significant based on analyses including potential confounders. Conclusions Preserved Gag-specific CD8 T-cell proliferation was associated with higher TGF-β1 levels and increased percentages of T cells with a gut-homing phenotype at least 15 years after HIV infection during the perinatal period.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2577-2577
Author(s):  
Richard W. Joseph ◽  
Tae Kon Kim ◽  
Lisa St. John ◽  
Jahan Khalili ◽  
Uday R Popat ◽  
...  

Abstract Clinical and epidemiological studies have demonstrated an increasingly stronger link between Vitamin D deficiency and a broad array of illnesses characterized by inflammation, including autoimmune diseases, coronary artery disease, and cancers. Vitamin D is a steroid hormone that exerts the majority of its biologic effects via the binding of the intracellular Vitamin D receptor (VDR). While upregulation of VDR has been demonstrated in activated bulk T cells using traditional approaches (e.g., western blotting), such assays cannot precisely define VDR distribution and kinetics. To overcome these limitations, we developed what we believe to be the first flow cytometric assay to quantify VDR expression at a single-cell level. We used a primary antibody against VDR (mouse monoclonal IgG2a to human VDR) in permeabilized T cells followed by a labeled secondary antibody. We detected a positive cell population using flow cytometry that was sharply increased following activation, consistent with upregulation of VDR confirmed by immunoblotting of sorted cells. We then applied this validated assay to define the kinetics of VDR upregulation in activated T cells. We stimulated PBMC with PMA:Ionomycin (P:I) for varying intervals and assessed intracellular VDR using flow cytometry. VDR is significantly upregulated by 15 min after stimulation, reaches a plateau after 6 hr, and may remain elevated for up to 7 d. We compared VDR to classical early and late T cell activation markers (CD69 and CD25, respectively), and we found that VDR was upregulated as consistently as (but even earlier than) CD69, and that VDR and CD25 were both consistently upregulated at later intervals (p<0.0001). To examine the association between VDR expression and proliferation, we stimulated CFSE-labeled T cells with OKT3 (2mg/ml) for 5 d and found that proliferating T cells expressed a significantly higher level of VDR than resting T cells, which maintained baseline VDR expression (p<0.0001). To assess the association between T cell cytokine production and VDR expression, we stimulated T cells with (P:I) for 6 hr in the presence of brefeldin A, and we confirmed that all cytokine-producing cells (TNFα, IL-2, IFNγ) were contained within the VDR-high population. We then assessed whether physiologic concentrations of Vitamin D could inhibit T cell proliferation in vitro. We stimulated CFSE-labeled PBMC with either OKT3 or irradiated allogeneic dendritic cells (DC) in the presence or absence of physiologic concentrations of calcitriol (50 nm) for 5 to 7 d. The presence of calcitriol during OKT3 stimulation resulted in significantly reduced cell division (p=0.004, n=5). Using a previously validated phenotype to demarcate activated alloreactive CD4+ T cells (CD4hiCD38+), we demonstrated that physiologic calcitriol supplementation decreased alloreactive activation following 7 d stimulation with allogeneic DC (p=0.0003, n=10). In conclusion, VDR is a consistent and specific early and late marker of T cell activation, suggesting a direct role for the Vitamin D axis in immunoregulation. Furthermore, physiological concentrations of Vitamin D can inhibit T cell proliferation induced by polyclonal stimuli, including allogeneic DC. These data provide confirmation for a direct immunoregulatory role for Vitamin D and suggest that further mechanistic and clinical studies may yield novel therapeutic strategies for inflammatory conditions, including graft-versus-host disease.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1041-1041
Author(s):  
Emily R Summerbell ◽  
Cynthia R. Giver ◽  
Sravanti Rangaraju ◽  
Katarzyna Anna Darlak ◽  
Edmund K. Waller

Abstract Introduction Vasoactive intestinal peptide (VIP) is a neuropeptide hormone that suppresses Th1 immunity and inhibits antiviral immunity. Decreased Th1 immunity is problematic for allogeneic bone marrow transplant (allo-BMT) patients requiring T-cell immunity against blood cancers (Graft-versus-Tumor) and against secondary infections such as CMV. VIPhyb, a modified VIP peptide, is a VIP receptor antagonist that decreases VIP signaling. VIP-knockout mice and mice treated with VIPhyb after allo-BMT are known to have better antiviral immunity and survival after CMV infection without increasing GvHD (Li et al. PLoS One. 2013 May 27;8(5):e63381) (Li et al. Blood. 2013 Mar 21;121(12):2347-51.), thus making VIPhyb of interest for pharmacological use in humans to improve the efficacy of allo-BMT The effects of VIPhyb on T-cell immunity are not yet fully profiled. This study aimed to analyze the effects of VIPhyb on CD4+ and CD8+ T-cell proliferation and activation in order to better understand the mechanistic implications of VIP inhibition on T-cell adaptive immunity. This study also aimed to show that mixed lymphocyte reactions (MLRs), an in vitro allo-BMT model, could be used to provide rapid and reliable results that are consistent with in vivo data. It was hypothesized that VIPhyb would increase T-cell immunity as profiled by: increased T-cell proliferation, CD69 and PD1 co-upregulation in early T-cell activation, and PD1 downregulation in T-cells after initial activation. Methods Splenocytes from two histoincompatible mice were cultured together at 37°C in a 1:1 ratio in a one-way MLR. BALB/c splenocytes (stimulators) were irradiated at 20Gy, and Pepboy splenocytes (responders) were labeled with CFSE to trace proliferation. VIPhyb was added daily to the cell cultures in doses of 0.1μM, 0.3μM, 1μM, or 3μM. Treatment groups were compared to a PBS control. Proliferation, CD69, and PD1 were assessed by flow cytometry on the BD FACSAria. All results are shown as mean ± SEM (n=3). One-way ANOVA tests with Dunnett post-tests were calculated using Prism software. *p < 0.05; **p < 0.01; ***p < 0.001 Results VIPhyb increased CD4+ and CD8+ T-cell proliferation: 3, 5, and 7 days after initiating a one-way MLR, CFSE expression of Pepboy responder T-cells was assessed using flow cytometry (Figure 1). As the VIPhyb dose increased, the percentage of initial splenocytes that underwent proliferation increased in both CD4+ and CD8+ T-cells. VIPhyb increased early T-cell CD69 expression and abrogated later PD1 upregulation in CD8+ T-cells: 3, 5, and 7 days after initiating a one-way MLR, expression levels of CD69 and PD1 on Pepboy responder T-cells were assessed by flow cytometry. Significant upregulation of CD69 on CD4+ and CD8+ T-cells on day 3 occurred with increasing VIPhyb doses (Figures 2A and 2B). PD1 was co-upregulated with CD69 during early activation, and VIPhyb significantly decreased PD1 expression on CD8+ T-cells on days 5 and 7 (Figures 2C and 2D). Conclusions VIPhyb increased T-cell proliferation; CD8+ T-cells were affected more significantly. VIPhyb increased early co-upregulation of CD69 and PD1 in all T-cells and significantly decreased later CD8+ T-cell PD1 expression, indicating that VIPhyb increases T-cell activation. We hypothesize that the decreased PD1 expression will be critical for understanding the pathways involved in VIP inhibition. Importantly, since it has been shown in vivo that VIPhyb does not increase GvHD, then it can be assumed that the VIPhyb-induced T-cell proliferation and activation will increase GvL and adaptive immunity without increasing alloreactivity. Notably, these results are consistent with published in vivo data, which demonstrates that the MLR can be used as a faster method of analyzing pharmacological compounds than in vivo experiments. Given these results, VIPhyb is still of interest as a potential therapy for allo-BMT patients. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Weigang Xiu ◽  
Jingjing Luo

Abstract Background Tumor-associated dendritic cells (TADCs) can interact with tumor cells to suppress anti-tumor T cell immunity. However, there is no information on whether and how TADCs can modulate programmed death-ligand 1 (PD-L1) expression by cancer cells. Methods Human peripheral blood monocytes were induced for DCs and immature DCs were cultured alone, or co-cultured with bladder cancer T24 or control SV-HUC-1 cells, followed by stimulating with LPS for DC activation. The activation status of DCs was characterized by flow cytometry and allogenic T cell proliferation. The levels of chemokines in the supernatants of co-cultured DCs were measured by CBA-based flow cytometry. The impacts of CXCL9 on PD-L1, STAT3 and Akt expression and STAT3 and Akt phosphorylation in T24 cells were determined by flow cytometry and Western blot. Results Compared with the control DCs, TADCs exhibited immature phenotype and had significantly lower capacity to stimulate allogenic T cell proliferation, particularly in the presence of recombinant CXCL9. TADCs produced significantly higher levels of CXCL9, which enhanced PD-L1 expression in T24 cells. Pre-treatment with AMG487 abrogated the CXCL9-increased PD-L1 expression in T24 cells. Treatment with CXCL9 significantly enhanced STAT3 and Akt activation in T24 cells. Conclusions TADCs produced high levels of CXCL9 that increased PD-L1 expression in bladder cancer T24 cells by activating the CXCR3-related signaling. Our findings may shed new lights in understanding the regulatory roles of TADCs in inhibiting antitumor T cell responses and promoting tumor growth.


2001 ◽  
Vol 98 (24) ◽  
pp. 13878-13883 ◽  
Author(s):  
A. C. McNeil ◽  
W. L. Shupert ◽  
C. A. Iyasere ◽  
C. W. Hallahan ◽  
J. Mican ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 294-294
Author(s):  
Sravanti Rangaraju ◽  
Junghwa Choi ◽  
Cynthia R. Giver ◽  
Edmund K. Waller

Abstract Background Graft versus host disease (GVHD) following allogeneic hematopoietic stem cell transplant (allo-HSCT) is caused by CD4+ and CD8+ donor T cells directed against mismatched recipient antigens, presented in the context of donor MHC-II (indirect pathway) and recipient MHC-I (direct pathway). Recently, the presence of 'cross-dressed' CD11c+ antigen presenting cells (APCs) expressing both donor and recipient type MHC-I molecules has been demonstrated in animal organ and HSCT transplant models supporting 'semi-direct' pathway of allo-activation (Wang et al, Blood. 2011).These APCs can efficiently present allo-antigens to both CD4+ and CD8+ T cells and activate immune responses that could lead to allograft rejection or GVHD. Exchange of membrane fragments and associated proteins between cells, termed trogocytosis, generates cross-dressed APCs.We sought to test whether cross-dressed APCs facilitate antigen presentation to donor T cells and initiate GVHD following allo-HSCT. Further, we tested an array of drugs as inhibitors of trogocytosis, to interrupt the semi-direct pathway of allo-antigen presentation. Methods In vivo experiments used a B6(H2Kb) ˆ B10.BR(H2Kk) murine transplant model. Spleens of transplanted mice were analyzed on days 10, 15, 20 post-transplant for presence of cross dressed CD11c+cells, and their expression of CD80, CD86 and MHC-II by flow cytometry. Cross dressed donor CD11c+ FACS sorted cells from recipient spleens were co-cultured with CFSE labeled donor type T-cells for 6 days, and T-cell proliferation was measured as dilution of CFSE by flow cytometry. In vitro experiments used primary MLR consisting of CFSE labeled B6 bone marrow cells co-cultured with PKH26 (membrane dye) labeled B10.BR splenocytes. B6 antigen presenting cells were analyzed by flow cytometry for the presence of CFSE+PKH26+ double positive cells generated by trogocytosis. Pharmacological inhibitors of cytoskeleton function were added to the primary MLR and their effect on trogocytosis as well as T cell proliferation was assessed. Results Cross-dressed donor CD11c+ APCs were generated in vivo following allo-HSCT (Figure 1). Recipient spleens showed that 50%, 28.6% (p=0.01) and 12% (p=0.02) of donor type CD11c+ cells were cross dressed on days 10, 15 and 20 respectively post transplant (n=5). These cross dressed APCs expressed higher levels of co-stimulatory molecules CD80 (p<0.001) and CD86 (p<0.001), and MHC-II compared to non-cross-dressed donor CD11c+ cells (Figure 2). Sorted cross dressed CD11c+ cells from recipient mice were able to induce in vitro proliferation of co-geneic CD8 T-cells, while their non-crossdressed counterparts did not. We demonstrated that cross-dressed CD11c+ cells were generated in vitro, by exchange of plasma membrane fragments and could be inhibited in vitro by low doses of paclitaxel and VIP antagonist (Figure 3), while preserving cell viability. Further more, bone marrow treated with 0.05uM of paclitaxel, caused significantly decreased T cell proliferation in primary MLR compared to non drug treated bone marrow. Discussion The high frequencies of cross-dressed donor CD11c+ APCs following allo-HSCT suggests that semi-direct allo-antigen presentation may play a key role in the initiation of GVHD, while the decreasing trend could reflect replacement of host cells by donor hematopoetic cells. Reducing the generation of cross-dressed APCs by pharmacological inhibition of trogocytosis is a novel approach to reduce GVHD post allo-HSCT, targeting the semi-direct pathway of allo-antigen presentaion. Our data shows that very low doses of paclitaxel, a microtubule inhibitor and VIPHyb, an antagonist of Vasoactive Intestinal Peptide signaling, can reduce semi-direct presentaion of allo-antigen to Tcells and reduce alloreactivity without direct cytotoxic effect. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document