Probable sites for passive movement of ions across the endodermis

1971 ◽  
Vol 49 (1) ◽  
pp. 35-38 ◽  
Author(s):  
E. B. Dumbroff ◽  
D. R. Peirson

The endodermis, with its associated Casparian strip, is generally believed to act as an effective barrier to the passive movement of ions from the cortex to the xylem in young roots. However, several workers have suggested that the functional integrity of the endodermis might be somewhat impaired with the emergence of branch roots from the pericycle, thus providing pathways for the mass flow of water and ions into the stele. The present work was undertaken to examine the validity of this hypothesis.Sections of lateral roots embedded in glycol methacrylate were stained and examined by fluorescence microscopy, and a general picture of the relationship between branch root development and concomitant changes in the endodermis emerged. The endodermal cells of the parent root were found to maintain a continuous, unbroken, suberized layer over the surface of a very young lateral root, but with continued elongation there is a period when formation of the Casparian strip lags behind division of endodermal cells. It appears likely that, at this stage, water and ions can enter the stele of the parent root by mass flow.


Author(s):  
Robertas Ursache ◽  
Cristovao De Jesus Vieira-Teixeira ◽  
Valérie Dénervaud Tendon ◽  
Kay Gully ◽  
Damien De Bellis ◽  
...  

ABSTRACTRoots anchor plants and deliver water and nutrients from the soil. The root endodermis provides the crucial extracellular diffusion barrier by setting up a supracellular network of lignified cell walls, called Casparian strips, supported by a subsequent formation of suberin lamellae. Whereas lignification is thought to be irreversible, formation of suberin lamellae was demonstrated to be dynamic, facilitating adaptation to different soil conditions. Plants shape their root system through the regulated formation of lateral roots emerging from within the endodermis, requiring local breaking and re-sealing of the endodermal diffusion barriers. Here, we show that differentiated endodermal cells have a distinct auxin-mediated transcriptional response that regulates cell wall remodelling. Based on this data set we identify a set of GDSL-lipases that are essential for suberin formation. Moreover, we find that another set of GDSL-lipases mediates suberin degradation, which enables the developmental plasticity of the endodermis required for normal lateral root emergence.



Author(s):  
K. N. Demchenko ◽  
A. S. Kiryushkin ◽  
E. L. Ilina ◽  
E. D. Guseva

In order to understand the relationship between genetic programs for the development of different types of lateral roots and symbiotic nodules, a comparative analysis of promoter activity of LOB-DOMAIN PROTEIN family genes was carried out.



2020 ◽  
Vol 48 (3) ◽  
pp. 1573-1584
Author(s):  
Jie LUO ◽  
Long-Yi YUAN

Cercis glabra is a colour-leaf tree with excellent ornamental value, whereas its physiological and morphological responses to waterlogging stress are still unclear. A potted study was conducted to determine the effects of waterlogging stress on antioxidative enzymes (superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)), lipid peroxidation (in terms of malondialdehyde (MDA) content), relative electric conductivity, and osmotic substance (free proline) of leaves and aerenchyma, lignification, suberization and Casparian strip of lateral roots of C. glabra. The result showed that the SOD, POD, and CAT activity and free proline content of C. glabra were significantly increased by the different degrees of waterlogging stress compared with the non-waterlogged treatment at 8 and 12 days, and the MDA content and relative electric conductivity of C. glabra leaves were significantly increased under the different degrees of waterlogging stress compared to the non-waterlogged treatment at 16 days, and the degrees of change increased among treatments was ranked as total waterlogged > semi-waterlogged > shallow waterlogged. The lateral roots of C. glabra not only formed developed aerenchyma in the cortex but also formed suberization and Casparian strip in the endodermis under semi-waterlogged treatment at 16 days. These results implied that C. glabra had a certain tolerance to waterlogging stress, which was associated with the increasing antioxidant enzyme activity and osmotic adjustment substance content, and with the formation of aerenchyma, suberization and Casparian strip in the lateral root to adapt to the waterlogged environment.



2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guilhem Reyt ◽  
Priya Ramakrishna ◽  
Isai Salas-González ◽  
Satoshi Fujita ◽  
Ashley Love ◽  
...  

AbstractLignin is a complex polymer deposited in the cell wall of specialised plant cells, where it provides essential cellular functions. Plants coordinate timing, location, abundance and composition of lignin deposition in response to endogenous and exogenous cues. In roots, a fine band of lignin, the Casparian strip encircles endodermal cells. This forms an extracellular barrier to solutes and water and plays a critical role in maintaining nutrient homeostasis. A signalling pathway senses the integrity of this diffusion barrier and can induce over-lignification to compensate for barrier defects. Here, we report that activation of this endodermal sensing mechanism triggers a transcriptional reprogramming strongly inducing the phenylpropanoid pathway and immune signaling. This leads to deposition of compensatory lignin that is chemically distinct from Casparian strip lignin. We also report that a complete loss of endodermal lignification drastically impacts mineral nutrients homeostasis and plant growth.



2021 ◽  
Author(s):  
Pierre-Mathieu Pélissier ◽  
Hans Motte ◽  
Tom Beeckman

Abstract Lateral roots are important to forage for nutrients due to their ability to increase the uptake area of a root system. Hence, it comes as no surprise that lateral root formation is affected by nutrients or nutrient starvation, and as such contributes to the root system plasticity. Understanding the molecular mechanisms regulating root adaptation dynamics towards nutrient availability is useful to optimize plant nutrient use efficiency. There is at present a profound, though still evolving, knowledge on lateral root pathways. Here, we aimed to review the intersection with nutrient signaling pathways to give an update on the regulation of lateral root development by nutrients, with a particular focus on nitrogen. Remarkably, it is for most nutrients not clear how lateral root formation is controlled. Only for nitrogen, one of the most dominant nutrients in the control of lateral root formation, the crosstalk with multiple key signals determining lateral root development is clearly shown. In this update, we first present a general overview of the current knowledge of how nutrients affect lateral root formation, followed by a deeper discussion on how nitrogen signaling pathways act on different lateral root-mediating mechanisms for which multiple recent studies yield insights.



Development ◽  
1995 ◽  
Vol 121 (10) ◽  
pp. 3303-3310 ◽  
Author(s):  
M.J. Laskowski ◽  
M.E. Williams ◽  
H.C. Nusbaum ◽  
I.M. Sussex

In both radish and Arabidopsis, lateral root initiation involves a series of rapid divisions in pericycle cells located on the xylem radius of the root. In Arabidopsis, the number of pericycle cells that divide to form a primordium was estimated to be about 11. To determine the stage at which primordia are able to function as root meristems, primordia of different stages were excised and cultured without added hormones. Under these conditions, primordia that consist of 2 cell layers fail to develop while primordia that consist of at least 3–5 cell layers develop as lateral roots. We hypothesize that meristem formation is a two-step process involving an initial period during which a population of rapidly dividing, approximately isodiametric cells that constitutes the primordium is formed, and a subsequent stage during which meristem organization takes place within the primordium.



Author(s):  
Marek Šírl ◽  
Tereza Šnajdrová ◽  
Dolores Gutiérrez-Alanís ◽  
Joseph G. Dubrovsky ◽  
Jean Phillipe Vielle-Calzada ◽  
...  

The AT-HOOK MOTIF NUCLEAR LOCALIZED PROTEIN (AHL) gene family encodes embryophyte-specific nuclear proteins with DNA binding activity. They modulate gene expression and affect various developmental processes in plants. We identify AHL18 (At3G60870) as a developmental modulator of root system architecture and growth. AHL18 regulates the length of the proliferation domain and number of dividing cells in the root apical meristem and thereby, cell production. Both primary root growth and lateral root development respond according to AHL18 transcription level. The ahl18 knock-out plants show reduced root systems due to a shorter primary root and a lower number of lateral roots. This change results from a higher number of arrested and non-developing lateral root primordia (LRP) rather than from decreased initiation. Overexpression of AHL18 results in a more extensive root system, longer primary roots, and increased density of lateral root initiation events. Formation of lateral roots is affected during the initiation of LRP and later development. AHL18 regulate root apical meristem activity, lateral root initiation and emergence, which is in accord with localization of its expression.



2020 ◽  
Vol 198 ◽  
pp. 04036
Author(s):  
JI Xiaolei ◽  
XU Lanlan ◽  
YANG Guoping

Ecological slope protection is of great importance for preventing the water and soil loss on bare slopes, improving the ecological environment, and realizing the sustainable ecosystem development. The root-soil composite slope consisting of homogenous soil mass and oleander root system was taken as the study object. Based on the mechanics principle of soil reinforcement by roots in ecological slope protection, the influences of the lateral root quantity of plants and included angle between main root and lateral root on the slope protection were investigated via the finite element (FE) software ABAQUS. The simulation results show that the larger the quantity of lateral roots, the more obvious the displacement reduction of the soil mass on the slope surface will be. The slope protection effect varies with the root morphology, the included angle between main root and lateral root is an important factor influencing the slope protection effect of plants, and the slope protection effect at included angle of 30° is apparently superior to that at 90°. The research results can provide a theoretical support for the plant selection in the ecological slope protection.



2021 ◽  
pp. 156-178
Author(s):  
James Warren

Aulus Gellius reports a set of criticisms of Cicero raised by Asinius Gallus. The criticisms include the claim that Cicero uses the notion of regret (paenitentia) incorrectly by implying that regret may be an appropriate response to something not voluntarily performed or chosen. This claim is assessed in the light both of the general picture of ancient accounts of regret assembled so far and also in the light of R. Jay Wallace’s recent account of the limits of regret and the relationship between regret and affirmation. This returns to the discussion of what a virtuous person may and may not regret.



Sign in / Sign up

Export Citation Format

Share Document