scholarly journals Abiotrophia defectiva DnaK Promotes Fibronectin-Mediated Adherence to HUVECs and Induces a Proinflammatory Response

2021 ◽  
Vol 22 (16) ◽  
pp. 8528
Author(s):  
Minoru Sasaki ◽  
Yu Shimoyama ◽  
Yoshitoyo Kodama ◽  
Taichi Ishikawa

Abiotrophia defectiva is a nutritionally variant streptococci that is found in the oral cavity, and it is an etiologic agent of infective endocarditis. We have previously reported the binding activity of A. defectiva to fibronectin and to human umbilical vein endothelial cells (HUVECs). However, the contribution of some adhesion factors on the binding properties has not been well delineated. In this study, we identified DnaK, a chaperon protein, as being one of the binding molecules of A. defectiva to fibronectin. Recombinant DnaK (rDnaK) bound immobilized fibronectin in a concentration-dependent manner, and anti-DnaK antiserum reduced the binding activity of A. defectiva with both fibronectin and HUVECs. Furthermore, DnaK were observed on the cell surfaces via immune-electroscopic analysis with anti-DnaK antiserum. Expression of IL-8, CCL2, ICAM-1, and VCAM-1 was upregulated with the A. defectiva rDnaK treatment in HUVECs. Furthermore, TNF-α secretion of THP-1 macrophages was also upregulated with the rDnaK. We observed these upregulations in rDnaK treated with polymyxin B, but not in the heat-treated rDnaK. The findings show that A. defectiva DnaK functions not only as an adhesin to HUVECs via the binding to fibronectin but also as a proinflammatory agent in the pathogenicity to cause infective endocarditis.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Purum Kang ◽  
Seung Ho Han ◽  
Hea Kyung Moon ◽  
Jeong-Min Lee ◽  
Hyo-Keun Kim ◽  
...  

The purpose of the present study is to examine the effects of essential oil ofCitrus bergamiaRisso (bergamot, BEO) on intracellular Ca2+in human umbilical vein endothelial cells. Fura-2 fluorescence was used to examine changes in intracellular Ca2+concentration[Ca2+]i. In the presence of extracellular Ca2+, BEO increased[Ca2+]i, which was partially inhibited by a nonselective Ca2+channel blocker La3+. In Ca2+-free extracellular solutions, BEO increased[Ca2+]iin a concentration-dependent manner, suggesting that BEO mobilizes intracellular Ca2+. BEO-induced[Ca2+]iincrease was partially inhibited by a Ca2+-induced Ca2+release inhibitor dantrolene, a phospholipase C inhibitor U73122, and an inositol 1,4,5-triphosphate (IP3)-gated Ca2+channel blocker, 2-aminoethoxydiphenyl borane (2-APB). BEO also increased[Ca2+]iin the presence of carbonyl cyanide m-chlorophenylhydrazone, an inhibitor of mitochondrial Ca2+uptake. In addition, store-operated Ca2+entry (SOC) was potentiated by BEO. These results suggest that BEO mobilizes Ca2+from primary intracellular stores via Ca2+-induced and IP3-mediated Ca2+release and affect promotion of Ca2+influx, likely via an SOC mechanism.


Blood ◽  
2001 ◽  
Vol 98 (4) ◽  
pp. 995-1002 ◽  
Author(s):  
Maria Koziolkiewicz ◽  
Edyta Gendaszewska ◽  
Maria Maszewska ◽  
C. A. Stein ◽  
Wojciech J. Stec

Many reports indicate different nonantisense yet sequence-specific effects of antisense phosphorothioate oligonucleotides. Products of enzymatic degradation of the oligonucleotides can also influence cell proliferation. The cytotoxic effects of deoxyribonucleoside-5′-phosphates (dNMPs) and their 5′-phosphorothioate analogs, deoxyribonucleoside-5′-monophosphorothioates (dNMPSs) on 4 human cell types (HeLa, HL-60, K-562, and endothelial cells) were examined, and the effects were correlated with the catabolism of these compounds. The results indicate that differences in cytotoxicity of dNMPs or dNMPSs in these cells depend upon different activity of an ecto-5′-nucleotidase. It has also been found that dNMPSs stimulate proliferation of human umbilical vein endothelial cells and HL-60 cells in a concentration-dependent manner. This stimulation might be caused by the binding of deoxynucleoside-5′-phosphorothioates to as-yet unidentified nucleotide receptor(s) at the cell surface.


1996 ◽  
Vol 270 (1) ◽  
pp. C259-C264 ◽  
Author(s):  
X. M. Xu ◽  
J. L. Tang ◽  
A. Hajibeigi ◽  
D. S. Loose-Mitchell ◽  
K. K. Wu

Human endothelial cells contain two isoforms of prostaglandin H synthase (PGHS). PGHS-1 is constitutively expressed, whereas PGHS-2 is inducible. To determine whether expression of PGHS-1 is regulated, we treated cultured human umbilical vein endothelial cells (HUVEC) with phorbol 12-myristate 13-acetate (PMA) or its inactive analogue and measured PGHS-1 mRNA levels by Northern analysis and competitive polymerase chain reaction. PMA increased PGHS-1 mRNA levels determined by both techniques in a time- and concentration-dependent manner. The mRNA level was increased about twofold over the basal level after 4-6 h of PMA (10-50 nM) treatment. The level of PGHS-1 protein was similarly increased by PMA. Stimulation of PGHS-1 mRNA levels was abrogated by cycloheximide, actinomycin D, staurosporine, or calphostin C. The 5'-promoter activity of human PGHS-1 gene was increased twofold over the basal level by PMA in NS-20 cells. These results indicate that the constitutive PGHS-1 in HUVEC is transcriptionally stimulated by PMA in a protein kinase C-dependent manner.


PPAR Research ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Jinbo Liu ◽  
Changlin Lu ◽  
Fuwang Li ◽  
Haining Wang ◽  
Liyun He ◽  
...  

Tetrahydrobiopterin (BH4) is an essential cofactor for endothelial nitric oxide (NO) synthase. Guanosine 5′-triphosphate cyclohydrolase-I (GTPCH-I) is a key limiting enzyme for BH4 synthesis. In the present in vitro study, we investigated whether peroxisome proliferator-activated receptorα(PPAR-α) agonist fenofibrate could recouple eNOS by reversing low-expression of intracellular BH4 in endothelial cells and discussed the potential mechanisms. After human umbilical vein endothelial cells (HUVECs) were treated with lipopolysaccharide (LPS) for 24 hours, the levels of cellular eNOS, BH4 and cell supernatant NO were significantly reduced compared to control group. And the fluorescence intensity of intracellular ROS was significantly increased. But pretreated with fenofibrate (10 umol/L) for 2 hours before cells were induced by LPS, the levels of eNOS, NO, and BH4 were significantly raised compared to LPS treatment alone. ROS production was markedly reduced in fenofibrate group than LPS group. In addition, our results showed that the level of intracellular GTPCH-I detected by western blot was increased in a concentration-dependent manner after being treated with fenofibrate. These results suggested that fenofibrate might help protect endothelial function and against atherosclerosis by increasing level of BH4 and decreasing production of ROS through upregulating the level of intracellular GTPCH-I.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chenjie Cao ◽  
Ya Su ◽  
Yanqi Gao ◽  
Chengrong Luo ◽  
Lu Yin ◽  
...  

In recent years, interest in natural plant extracts for cancer treatment is growing in the drug development field. Ginkgo biloba exocarp extract (GBEE) is known for possessing inhibitory effects on various mouse and human cancer cells. And no adverse reactions were observed during its clinical application to cancer patients. The aim of this study is to investigate the inhibitory effect of GBEE on the metastasis of B16-F10 melanoma and its related mechanisms. The B16-F10 melanoma lung metastasis model was established in C57BL/6J mice. It was found that GBEE inhibited the growth and pulmonary metastasis of B16-F10 melanoma transplanted tumor and downregulated the level of MMP-9 protein. Meanwhile, the B16-F10 cells were used to study in vitro. The results showed that GBEE inhibited the proliferation and migration of B16-F10 cells. Simultaneously, it suppressed the heterogeneous adhesion of B16-F10 cells to human umbilical vein endothelial cells (HUVEC) in a concentration-dependent manner. In addition, the levels of p-PI3K, p-Akt, NF-κB, and MMP-9 were decreased, while the PI3K and Akt were not significantly changed. These results indicate that GBEE can inhibit the metastasis of B16-F10 melanoma via multiple links and the molecular mechanism involved the regulation of PI3K/Akt/NF-κB/MMP-9 signaling pathway.


1992 ◽  
Vol 67 (03) ◽  
pp. 331-334 ◽  
Author(s):  
Haruhiko Sago ◽  
Kazuso linuma

SummaryWe quantified thrombin-induced endothelial cells shape change and investigated the role of Ca2+ in such shape change. We used the fluorescent Ca2+ indicator, fura2, to measure both shape change as cell size and intracellular free Ca2+ ([Ca2+]i), in cultured human umbilical-vein endothelial cells (HUVEC). Thrombin induced concentration-dependent decreases in cell size (percentage of cell size at 6 min after stimulation with 0.01 U/ml, 0.1 U/ml, or 1 U/ml thrombin) was 90.1 ± 1.5%, 78.1 ± 2.4%, and 40.9 ± 2.4%, respectively. Thrombin also increased [Ca2+]i in a concentration-dependent manner. Both depletion of extracellular Ca2+, and also the addition of W5, a calmodulin antagonist, inhibited thrombin-induced size reduction. These results indicate an association between shape change and [Ca2+]i mobilization in human endothelial cells stimulated by thrombin.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Hisa Hui Ling Tseng ◽  
Chi Teng Vong ◽  
George Pak-Heng Leung ◽  
Sai Wang Seto ◽  
Yiu Wa Kwan ◽  
...  

Calycosin and formononetin are two structurally similar isoflavonoids that have been shown to induce vasodilation in aorta and conduit arteries, but study of their actions on endothelial functions is lacking. Here, we demonstrated that both isoflavonoids relaxed rat mesenteric resistance arteries in a concentration-dependent manner, which was reduced by endothelial disruption and nitric oxide synthase (NOS) inhibition, indicating the involvement of both endothelium and vascular smooth muscle. In addition, the endothelium-dependent vasodilation, but not the endothelium-independent vasodilation, was blocked by BKCa inhibitor iberiotoxin (IbTX). Using human umbilical vein endothelial cells (HUVECs) as a model, we showed calycosin and formononetin induced dose-dependent outwardly rectifying K+ currents using whole cell patch clamp. These currents were blocked by tetraethylammonium chloride (TEACl), charybdotoxin (ChTX), or IbTX, but not apamin. We further demonstrated that both isoflavonoids significantly increased nitric oxide (NO) production and upregulated the activities and expressions of endothelial NOS (eNOS) and neuronal NOS (nNOS). These results suggested that calycosin and formononetin act as endothelial BKCa activators for mediating endothelium-dependent vasodilation through enhancing endothelium hyperpolarization and NO production. Since activation of BKCa plays a role in improving behavioral and cognitive disorders, we suggested that these two isoflavonoids could provide beneficial effects to cognitive disorders through vascular regulation.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Zhimin Zhang ◽  
Congying Wei ◽  
Yanfen Zhou ◽  
Tao Yan ◽  
Zhengqiang Wang ◽  
...  

Homocysteine- (Hcy-) induced endothelial cell apoptosis has been suggested as a cause of Hcy-dependent vascular injury, while the proposed molecular pathways underlying this process are unclear. In this study, we investigated the adverse effects of Hcy on human umbilical vein endothelial cells (HUVEC) and the underlying mechanisms. Our results demonstrated that moderate-dose Hcy treatment induced HUVEC apoptosis in a time-dependent manner. Furthermore, prolonged Hcy treatment increased the expression of NOX4 and the production of intracellular ROS but decreased the ratio of Bcl-2/Bax and mitochondrial membrane potential (MMP), resulting in the leakage of cytochrome c and activation of caspase-3. Prolonged Hcy treatment also upregulated glucose-regulated protein 78 (GRP78), activated protein kinase RNA-like ER kinase (PERK), and induced the expression of C/EBP homologous protein (CHOP) and the phosphorylation of NF-κb. The inhibition of NOX4 decreased the production of ROS and alleviated the Hcy-induced HUVEC apoptosis and ER stress. Blocking the PERK pathway partly alleviated Hcy-induced HUVEC apoptosis and the activation of NF-κb. Taken together, our results suggest that Hcy-induced mitochondrial dysfunction crucially modulated apoptosis and contributed to the activation of ER stress in HUVEC. The excessive activation of the PERK pathway partly contributed to Hcy-induced HUVEC apoptosis and the phosphorylation of NF-κb.


2005 ◽  
Vol 289 (4) ◽  
pp. H1669-H1675 ◽  
Author(s):  
John P. Cullen ◽  
Shariq Sayeed ◽  
Ying Jin ◽  
Nicholas G. Theodorakis ◽  
James V. Sitzmann ◽  
...  

The aim of this study was to determine the effect of ethanol (EtOH) on endothelial monocyte chemotactic protein-1 (MCP-1) expression. IL-1β increased the production of MCP-1 by human umbilical vein endothelial cells from undetectable levels to ∼900 pg/ml at 24 h. EtOH dose-dependently inhibited IL-1β-stimulated MCP-1 secretion as determined by ELISA: 25 ± 1%, 35 ± 7%, and 65 ± 5% inhibition for 1, 10, and 100 mM EtOH, respectively, concomitant with inhibition of monocyte adhesion to activated endothelial cells. Similarly, EtOH dose-dependently inhibited IL-1β-stimulated MCP-1 mRNA expression. Experiments with actinomycin D demonstrated that EtOH decreased the stability of MCP-1 mRNA. In addition, EtOH significantly reduced NF-κB and AP-1 binding activity induced by IL-1β and inhibited MCP-1 gene transcription. Binding of 125I-labeled MCP-1 to its receptor (CCR2) on THP-1 human monocytic cells was not affected by EtOH treatment. Modulation of the expression of MCP-1 represents a mechanism whereby EtOH could inhibit atherogenesis by blocking the crucial early step of monocyte adhesion and subsequent recruitment to the subendothelial space. These actions of EtOH may underlie, in part, its cardiovascular protective effects in vivo.


2004 ◽  
Vol 382 (3) ◽  
pp. 933-943 ◽  
Author(s):  
Hironobu YAMASHITA ◽  
Akira GOTO ◽  
Tatsuhiko KADOWAKI ◽  
Yasuo KITAGAWA

We have previously shown that the LG4 (laminin G-like) domain of the laminin α4 chain is responsible for the significantly higher affinity of the α4 chain to heparin than found for other α chains [Yamaguchi, Yamashita, Mori, Okazaki, Nomizu, Beck and Kitagawa (2000) J. Biol. Chem. 275, 29458–29465]; four basic residues were identified to be essential for this activity [Yamashita, Beck and Kitagawa (2004) J. Mol. Biol. 335, 1145–1149]. By creating GST (glutathione S-transferase)-fused LG1, LG2, LG4 and LG5 proteins, we found that only LG4 is active for the adhesion of human HT1080 cells, human umbilical vein endothelial cells and Drosophila haemocytes Kc167 with a half-saturating concentration of 20 μg/ml. Adhesion was counteracted by treatment of the cells with heparin, heparan sulphate and heparitinase I. Upon mutating the four basic residues essential for heparin binding within LG4, the adhesion activity was abolished. Pull-down experiments using glutathione beads/GST-fusion proteins indicate a direct interaction of LG4 with syndecan-4, which might be the major receptor for cell adhesion. Neither the release of glypican-1 by treating human cells with phosphatidylinositol-specific phospholipase C nor targeted knockdown of dally or dally-like protein impaired the cell-adhesion activity. As the LG4–LG5 domain of the α4 chain is cleaved in vivo from the main body of laminin-8 (α4β1γ1), we suggest that the heparan sulphate proteoglycan-binding activity of LG4 is significant in modulating the signalling of Wnt, Decapentaplegic and fibroblast growth factors.


Sign in / Sign up

Export Citation Format

Share Document