scholarly journals Strategies to Improve the Antitumor Effect of γδ T Cell Immunotherapy for Clinical Application

2021 ◽  
Vol 22 (16) ◽  
pp. 8910
Author(s):  
Masatsugu Miyashita ◽  
Teruki Shimizu ◽  
Eishi Ashihara ◽  
Osamu Ukimura

Human γδ T cells show potent cytotoxicity against various types of cancer cells in a major histocompatibility complex unrestricted manner. Phosphoantigens and nitrogen-containing bisphosphonates (N-bis) stimulate γδ T cells via interaction between the γδ T cell receptor (TCR) and butyrophilin subfamily 3 member A1 (BTN3A1) expressed on target cells. γδ T cell immunotherapy is classified as either in vivo or ex vivo according to the method of activation. Immunotherapy with activated γδ T cells is well tolerated; however, the clinical benefits are unsatisfactory. Therefore, the antitumor effects need to be increased. Administration of γδ T cells into local cavities might improve antitumor effects by increasing the effector-to-target cell ratio. Some anticancer and molecularly targeted agents increase the cytotoxicity of γδ T cells via mechanisms involving natural killer group 2 member D (NKG2D)-mediated recognition of target cells. Both the tumor microenvironment and cancer stem cells exert immunosuppressive effects via mechanisms that include inhibitory immune checkpoint molecules. Therefore, co-immunotherapy with γδ T cells plus immune checkpoint inhibitors is a strategy that may improve cytotoxicity. The use of a bispecific antibody and chimeric antigen receptor might be effective to overcome current therapeutic limitations. Such strategies should be tested in a clinical research setting.

2021 ◽  
Vol 11 (9) ◽  
pp. 923
Author(s):  
Josephine G. M. Strijker ◽  
Ronja Pscheid ◽  
Esther Drent ◽  
Jessica J. F. van der Hoek ◽  
Bianca Koopmans ◽  
...  

Currently ~50% of patients with a diagnosis of high-risk neuroblastoma will not survive due to relapsing or refractory disease. Recent innovations in immunotherapy for solid tumors are highly promising, but the low MHC-I expression of neuroblastoma represents a major challenge for T cell-mediated immunotherapy. Here, we propose a novel T cell-based immunotherapy approach for neuroblastoma, based on the use of TEG002, αβ-T cells engineered to express a defined γδ-T cell receptor, which can recognize and kill target cells independent of MHC-I. In a co-culture killing assay, we showed that 3 out of 6 neuroblastoma organoids could activate TEG002 as measured by IFNγ production. Transcriptional profiling showed this effect correlates with an increased activity of processes involved in interferon signaling and extracellular matrix organization. Analysis of the dynamics of organoid killing by TEG002 over time confirmed that organoids which induced TEG002 activation were efficiently killed independent of their MHC-I expression. Of note, efficacy of TEG002 treatment was superior to donor-matched untransduced αβ-T cells or endogenous γδ-T cells. Our data suggest that TEG002 may be a promising novel treatment option for a subset of neuroblastoma patients.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1411-1411 ◽  
Author(s):  
Anne Marijn Kramer ◽  
Mengyong Yan ◽  
Karl S Peggs ◽  
John Anderson ◽  
Kenth Gustafsson

Abstract Tumor-Associated Antigen Presentation by γδ T-Cells in Cancer Immunotherapy Human γδ T-cells are considered to represent a link between innate and adaptive immunity. Their innate killing properties display a potent cytotoxic activity against solid tumors as well as lymphoid and myeloid malignancies. Subsequently, by lysing affected target cells and liberating antigen for uptake, they can differentiate into professional antigen presenting cells (pAPCs) for induction of CD4+ and CD8+ T cell responses. The degree of antigen-specific stimulation of responder T cells is increased in the presence of antibody(Ab)-assisted opsonized target cells, involving the low-affinity receptor for IgG CD16 (Fc γRIII), equivalent to that seen with mature antigen-loaded DCs. To elaborate the implications of this combined killing and pAPC function we have studied how freshly isolated as well as expanded and cloned populations of γδ T-cell subsets kill a target tumor cell, and take up and cross-present tumor-associated antigens (TAA). We performed quantitative analysis on the cellular uptake of different sizes of microspheres, analyzing the correlation between opsonization and internalization. All γδ T-cell subtypes were expanded using artificial APC, engineered to express CD86, CD137L and IL-15, and anti- γδ TCR Ab (B1). Short (EAAGIGILTV) and long (GHSYTTAEEAAGIGILTVILGVLLL) MART-1 peptides were used as antigens for γδ T-cell presentation to MART-1 TCR-transduced cytotoxic T-cells. A CFSE assay was performed to assess cytotoxic T-cell proliferation. Target cells and polysterene microspheres were opsonized with human anti-CD20 IgG1, Rituximab (RTX). CD16 function was blocked with a mouse monoclonal IgG1 anti-CD16 blocking Ab (clone LNK16). Imaging flowcytometry allowed us to quantify internalization of FITC-labeled microspheres. The Internalization Score is defined as the ratio of intensity inside the cell to the intensity of the entire cell. Both γδ T-cell lines and expanded γδ T-cell clones cultured long-term, remarkably, retain both tumor cell killing and take up tumor cell lysates or long synthetic TAA peptides and cross-present these on MHC class I to CD8+ cytotoxic T-cells in a dynamic, controllable fashion, dependent on Ab-opsonization. (Figure 1). The Ab-opsonization of 1 µm microspheres correlates with a higher receptor-mediated phagocytic uptake, in a CD16 dependent manner (Figure 2). The opsonization of 0,5 µm microspheres led to clumping of the microspheres, accounting for the lower uptake in this particular subgroup. For a lack of better alternative, moDCs have been widely used in experimental immunotherapy settings. The ease of manipulation of human γδ T-cells, the ability to be expanded ex-vivo combined with antigen presentation makes them a great potential tool for immunotherapy as a complementary or integrative strategy. Ligation of the γδ T-cell receptor at the tumor site will activate their expansion and innate killing. Yet, antigen presentation will only occur after binding of an immunoglobulin to the tumor cell, thereby activating their dual role. Our goal is to define an effective adjuvant vaccine formulation for inducing leukemia-specific cytolytic effects. We are currently investigating whether γδ T-cells can directly present and/or cross-present to cytotoxic T-cells in-vivo in a humanized mouse model. We believe that the uptake of microspheres by γδ T-cells has an impact on the development of vaccination strategies for cancer immunotherapy, as the immunization of γδ T-cells is a powerful method for the induction or reactivation of cytotoxic T cell specific responses. FIGURE 1 CFSE assay of γδ T-cell lines cross-presenting short and long MART-1 peptides to MART-1 TCR-transduced cytotoxic T-cells in a dynamic, controllable fashion, dependent on Ab-opsonization FIGURE 1. CFSE assay of γδ T-cell lines cross-presenting short and long MART-1 peptides to MART-1 TCR-transduced cytotoxic T-cells in a dynamic, controllable fashion, dependent on Ab-opsonization FIGURE 2a FIGURE 2a. FIGURE 2b FIGURE 2b. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 8 (2) ◽  
pp. e001224 ◽  
Author(s):  
Hussein Sultan ◽  
Juan Wu ◽  
Valentyna I Fesenkova ◽  
Aaron E Fan ◽  
Diane Addis ◽  
...  

BackgroundImmunotherapies, such as immune checkpoint inhibitors and adoptive cell therapies, have revolutionized cancer treatment and resulted in complete and durable responses in some patients. Unfortunately, most immunotherapy treated patients still fail to respond. Absence of T cell infiltration to the tumor site is one of the major obstacles limiting immunotherapy efficacy against solid tumors. Thus, the development of strategies that enhance T cell infiltration and broaden the antitumor efficacy of immunotherapies is greatly needed.MethodsWe used mouse tumor models, genetically deficient mice and vascular endothelial cells (VECs) to study the requirements for T cell infiltration into tumors.ResultsA specific formulation of poly-IC, containing poly-lysine and carboxymethylcellulose (PICLC) facilitated the traffic and infiltration of effector CD8 T cells into the tumors that reduced tumor growth. Surprisingly, intratumoral injection of PICLC was significantly less effective in inducing tumor T cell infiltration and controlling growth of tumors as compared with systemic (intravenous or intramuscular) administration. Systemically administered PICLC, but not poly-IC stimulated tumor VECs via the double-stranded RNA cytoplasmic sensor MDA5, resulting in enhanced adhesion molecule expression and the production of type I interferon (IFN-I) and T cell recruiting chemokines. Expression of IFNαβ receptor in VECs was necessary to obtain the antitumor effects by PICLC and IFN-I was found to directly stimulate the secretion of T cell recruiting chemokines by VECs indicating that this cytokine-chemokine regulatory axis is crucial for recruiting effector T cells into the tumor parenchyma. Unexpectedly, these effects of PICLC were mostly observed in tumors and not in normal tissues.ConclusionsThese findings have strong implications for the improvement of all types of T cell-based immunotherapies for solid cancers. We predict that systemic administration of PICLC will improve immune checkpoint inhibitor therapy, adoptive cell therapies and therapeutic cancer vaccines.


2022 ◽  
Author(s):  
Linjie Yuan ◽  
Xianqiang Ma ◽  
Yunyun Yang ◽  
Xin Li ◽  
Weiwei Ma ◽  
...  

Tumor cells and pathogen-infected cells are presented to human γδ T cells based on "inside-out" signaling in which metabolites called phosphoantigens (pAgs) inside target cells are recognized by the intracellular domain of a butyrophilin protein (BTN3A1), leading to an extracellular conformational change. Here, we report that pAgs function as molecular "glues" that initiate a heteromeric association between the intracellular domains of BTN3A1 and the structurally similar BTN2A1. Working with both exogenous and endogenous pAgs, we used x-ray crystallography, mutational studies, cellular assays, synthetic probe as well as molecular dynamics investigations to determine how pAgs glue intracellular BTN3A1 and BTN2A1 together for the "inside-out" signaling that triggers γδ T cell activation. This γδ T cell-specific mode of antigen sensing creates opportunities for the development of alternative immunotherapies against cancer and infectious diseases that do not involve αβ T cells.


Blood ◽  
2000 ◽  
Vol 96 (2) ◽  
pp. 384-392 ◽  
Author(s):  
Volker Kunzmann ◽  
Eva Bauer ◽  
Juliane Feurle ◽  
Florian Weißinger, Hans-Peter Tony ◽  
Martin Wilhelm

Abstract Bisphosphonates are well-known inhibitors of osteoclastic bone resorption, but recent clinical reports support the possibility of direct or indirect antitumor effects by these compounds. Because bisphosphonates share structural homologies with recently identified γδ T-cell ligands, we examined the stimulatory capacity of bisphosphonates to γδ T cells and determined whether γδ T-cell stimulation by bisphosphonates could be exploited to generate antiplasma cell activity in multiple myeloma (MM). All tested aminobisphosphonates (alendronate, ibandronate, and pamidronate) induced significant expansion of γδ T cells (Vγ9Vδ2 subset) in peripheral blood mononuclear cell cultures of healthy donors at clinically relevant concentrations (half-maximal activity, 0.9-4 μmol/L). The proliferative response of γδ T cells to aminobisphosphonates was IL-2 dependent, whereas activation of γδ T cells (up-regulation of CD25 and CD69) occurred in the absence of exogenous cytokines. Pamidronate-activated γδ T cells produced cytokines (ie, interferon [IFN]-γ) and exhibited specific cytotoxicity against lymphoma (Daudi) and myeloma cell lines (RPMI 8226, U266). Pamidronate-treated bone marrow (BM) cultures of 24 patients with MM showed significantly reduced plasma cell survival compared with untreated cultures, especially in cultures in which activation of BM-γδ T cells was evident (14 of 24 patients with MM). γδ T-cell depletion from BM cultures completely abrogated the cytoreductive effect on myeloma cells in 2 of 3 tested patients with MM. These results show that aminobisphosphonates stimulating γδ T cells have pronounced effects on the immune system, which might contribute to the antitumor effects of these drugs.


Blood ◽  
2000 ◽  
Vol 96 (2) ◽  
pp. 384-392 ◽  
Author(s):  
Volker Kunzmann ◽  
Eva Bauer ◽  
Juliane Feurle ◽  
Florian Weißinger, Hans-Peter Tony ◽  
Martin Wilhelm

Bisphosphonates are well-known inhibitors of osteoclastic bone resorption, but recent clinical reports support the possibility of direct or indirect antitumor effects by these compounds. Because bisphosphonates share structural homologies with recently identified γδ T-cell ligands, we examined the stimulatory capacity of bisphosphonates to γδ T cells and determined whether γδ T-cell stimulation by bisphosphonates could be exploited to generate antiplasma cell activity in multiple myeloma (MM). All tested aminobisphosphonates (alendronate, ibandronate, and pamidronate) induced significant expansion of γδ T cells (Vγ9Vδ2 subset) in peripheral blood mononuclear cell cultures of healthy donors at clinically relevant concentrations (half-maximal activity, 0.9-4 μmol/L). The proliferative response of γδ T cells to aminobisphosphonates was IL-2 dependent, whereas activation of γδ T cells (up-regulation of CD25 and CD69) occurred in the absence of exogenous cytokines. Pamidronate-activated γδ T cells produced cytokines (ie, interferon [IFN]-γ) and exhibited specific cytotoxicity against lymphoma (Daudi) and myeloma cell lines (RPMI 8226, U266). Pamidronate-treated bone marrow (BM) cultures of 24 patients with MM showed significantly reduced plasma cell survival compared with untreated cultures, especially in cultures in which activation of BM-γδ T cells was evident (14 of 24 patients with MM). γδ T-cell depletion from BM cultures completely abrogated the cytoreductive effect on myeloma cells in 2 of 3 tested patients with MM. These results show that aminobisphosphonates stimulating γδ T cells have pronounced effects on the immune system, which might contribute to the antitumor effects of these drugs.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2941
Author(s):  
Luciana R. C. Barros ◽  
Emanuelle A. Paixão ◽  
Andrea M. P. Valli ◽  
Gustavo T. Naozuka ◽  
Artur C. Fassoni ◽  
...  

Immunotherapy has gained great momentum with chimeric antigen receptor T cell (CAR-T) therapy, in which patient’s T lymphocytes are genetically manipulated to recognize tumor-specific antigens, increasing tumor elimination efficiency. In recent years, CAR-T cell immunotherapy for hematological malignancies achieved a great response rate in patients and is a very promising therapy for several other malignancies. Each new CAR design requires a preclinical proof-of-concept experiment using immunodeficient mouse models. The absence of a functional immune system in these mice makes them simple and suitable for use as mathematical models. In this work, we develop a three-population mathematical model to describe tumor response to CAR-T cell immunotherapy in immunodeficient mouse models, encompassing interactions between a non-solid tumor and CAR-T cells (effector and long-term memory). We account for several phenomena, such as tumor-induced immunosuppression, memory pool formation, and conversion of memory into effector CAR-T cells in the presence of new tumor cells. Individual donor and tumor specificities are considered uncertainties in the model parameters. Our model is able to reproduce several CAR-T cell immunotherapy scenarios, with different CAR receptors and tumor targets reported in the literature. We found that therapy effectiveness mostly depends on specific parameters such as the differentiation of effector to memory CAR-T cells, CAR-T cytotoxic capacity, tumor growth rate, and tumor-induced immunosuppression. In summary, our model can contribute to reducing and optimizing the number of in vivo experiments with in silico tests to select specific scenarios that could be tested in experimental research. Such an in silico laboratory is an easy-to-run open-source simulator, built on a Shiny R-based platform called CARTmath. It contains the results of this manuscript as examples and documentation. The developed model together with the CARTmath platform have potential use in assessing different CAR-T cell immunotherapy protocols and its associated efficacy, becoming an accessory for in silico trials.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 743
Author(s):  
Aleksei Titov ◽  
Ekaterina Zmievskaya ◽  
Irina Ganeeva ◽  
Aygul Valiullina ◽  
Alexey Petukhov ◽  
...  

Adoptive cell immunotherapy (ACT) is a vibrant field of cancer treatment that began progressive development in the 1980s. One of the most prominent and promising examples is chimeric antigen receptor (CAR) T-cell immunotherapy for the treatment of B-cell hematologic malignancies. Despite success in the treatment of B-cell lymphomas and leukemia, CAR T-cell therapy remains mostly ineffective for solid tumors. This is due to several reasons, such as the heterogeneity of the cellular composition in solid tumors, the need for directed migration and penetration of CAR T-cells against the pressure gradient in the tumor stroma, and the immunosuppressive microenvironment. To substantially improve the clinical efficacy of ACT against solid tumors, researchers might need to look closer into recent developments in the other branches of adoptive immunotherapy, both traditional and innovative. In this review, we describe the variety of adoptive cell therapies beyond CAR T-cell technology, i.e., exploitation of alternative cell sources with a high therapeutic potential against solid tumors (e.g., CAR M-cells) or aiming to be universal allogeneic (e.g., CAR NK-cells, γδ T-cells), tumor-infiltrating lymphocytes (TILs), and transgenic T-cell receptor (TCR) T-cell immunotherapies. In addition, we discuss the strategies for selection and validation of neoantigens to achieve efficiency and safety. We provide an overview of non-conventional TCRs and CARs, and address the problem of mispairing between the cognate and transgenic TCRs. Finally, we summarize existing and emerging approaches for manufacturing of the therapeutic cell products in traditional, semi-automated and fully automated Point-of-Care (PoC) systems.


2021 ◽  
Vol 9 (4) ◽  
pp. e002051
Author(s):  
Ryan Michael Reyes ◽  
Yilun Deng ◽  
Deyi Zhang ◽  
Niannian Ji ◽  
Neelam Mukherjee ◽  
...  

BackgroundAnti-programmed death-ligand 1 (αPD-L1) immunotherapy is approved to treat bladder cancer (BC) but is effective in <30% of patients. Interleukin (IL)-2/αIL-2 complexes (IL-2c) that preferentially target IL-2 receptor β (CD122) augment CD8+ antitumor T cells known to improve αPD-L1 efficacy. We hypothesized that the tumor microenvironment, including local immune cells in primary versus metastatic BC, differentially affects immunotherapy responses and that IL-2c effects could differ from, and thus complement αPD-L1.MethodsWe studied mechanisms of IL-2c and αPD-L1 efficacy using PD-L1+ mouse BC cell lines MB49 and MBT-2 in orthotopic (bladder) and metastatic (lung) sites.ResultsIL-2c reduced orthotopic tumor burden and extended survival in MB49 and MBT-2 BC models, similar to αPD-L1. Using antibody-mediated cell depletions and genetically T cell-deficient mice, we unexpectedly found that CD8+ T cells were not necessary for IL-2c efficacy against tumors in bladder, whereas γδ T cells, not reported to contribute to αPD-L1 efficacy, were indispensable for IL-2c efficacy there. αPD-L1 responsiveness in bladder required conventional T cells as expected, but not γδ T cells, altogether defining distinct mechanisms for IL-2c and αPD-L1 efficacy. γδ T cells did not improve IL-2c treatment of subcutaneously challenged BC or orthotopic (peritoneal) ovarian cancer, consistent with tissue-specific and/or tumor-specific γδ T cell contributions to IL-2c efficacy. IL-2c significantly altered bladder intratumoral γδ T cell content, activation status, and specific γδ T cell subsets with antitumor or protumor effector functions. Neither IL-2c nor αPD-L1 alone treated lung metastatic MB49 or MBT-2 BC, but their combination improved survival in both models. Combination treatment efficacy in lungs required CD8+ T cells but not γδ T cells.ConclusionsMechanistic insights into differential IL-2c and αPD-L1 treatment and tissue-dependent effects could help develop rational combination treatment strategies to improve treatment efficacy in distinct cancers. These studies also provide insights into γδ T cell contributions to immunotherapy in bladder and engagement of adaptive immunity by IL-2c plus αPD-L1 to treat refractory lung metastases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaohui Wang ◽  
Xiang Lin ◽  
Zihan Zheng ◽  
Bingtai Lu ◽  
Jun Wang ◽  
...  

AbstractInnate immunity is important for host defense by eliciting rapid anti-viral responses and bridging adaptive immunity. Here, we show that endogenous lipids released from virus-infected host cells activate lung γδ T cells to produce interleukin 17 A (IL-17A) for early protection against H1N1 influenza infection. During infection, the lung γδ T cell pool is constantly supplemented by thymic output, with recent emigrants infiltrating into the lung parenchyma and airway to acquire tissue-resident feature. Single-cell studies identify IL-17A-producing γδ T (Tγδ17) cells with a phenotype of TCRγδhiCD3hiAQP3hiCXCR6hi in both infected mice and patients with pneumonia. Mechanistically, host cell-released lipids during viral infection are presented by lung infiltrating CD1d+ B-1a cells to activate IL-17A production in γδ T cells via γδTCR-mediated IRF4-dependent transcription. Reduced IL-17A production in γδ T cells is detected in mice either lacking B-1a cells or with ablated CD1d in B cells. Our findings identify a local host-immune crosstalk and define important cellular and molecular mediators for early innate defense against lung viral infection.


Sign in / Sign up

Export Citation Format

Share Document