scholarly journals Expression Analysis of MaTGA8 Transcription Factor in Banana and Its Defence Functional Analysis by Overexpression in Arabidopsis

2021 ◽  
Vol 22 (17) ◽  
pp. 9344
Author(s):  
Ping Lin ◽  
Tao Dong ◽  
Wenliang Chen ◽  
Niexia Zou ◽  
Yinglong Chen ◽  
...  

TGA transcription factor is a member of the D subfamily of the basic region-leucine zippers (bZIP) family. It is a type of transcription factor that was first identified in plants and is the main regulator in plant development and physiological processes, including morphogenesis and seed formation in response to abiotic and biotic stress and maintaining plant growth. The present study examined the sequence of the MaTGA8 transcription factor, the sequence of which belonged to subfamily D of the bZIP and had multiple cis-acting elements such as the G-box, TCA-element, TGACG-element, and P-box. Quantitative real time polymerase chain reaction (qRT-PCR) analyses showed that MaTGA8 was significantly down-regulated by the soil-borne fungus Fusarium oxysporum f. sp. cubense race 4 (Foc TR4). Under the induction of salicylic acid (SA), MaTGA8 was down-regulated, while different members of the MaNPR1 family responded significantly differently. Among them, MaNPR11 and MaNPR3 showed an overall upward trend, and the expression level of MaNPR4, MaNPR8, and MaNPR13 was higher than other members. MaTGA8 is a nuclear-localized transcription factor through strong interaction with MaNPR11 or weaker interaction with MaNPR4, and it is implied that the MaPR gene can be activated. In addition, the MaTGA8 transgenic Arabidopsis has obvious disease resistance and higher chlorophyll content than the wild-type Arabidopsis with the infection of Foc TR4. These results indicate that MaTGA8 may enhance the resistance of bananas to Foc TR4 by interacting with MaNPR11 or MaNPR4. This study provides a basis for further research on the application of banana TGA transcription factors in Foc TR4 stress and disease resistance and molecular breeding programs.

Genetics ◽  
1998 ◽  
Vol 150 (4) ◽  
pp. 1605-1614
Author(s):  
Junyuan Wu ◽  
Konstantin V Krutovskii ◽  
Steven H Strauss

Abstract We examined mitochondrial DNA polymorphisms via the analysis of restriction fragment length polymorphisms in three closely related species of pines from western North America: knobcone (Pinus attenuata Lemm.), Monterey (P. radiata D. Don), and bishop (P. muricata D. Don). A total of 343 trees derived from 13 populations were analyzed using 13 homologous mitochondrial gene probes amplified from three species by polymerase chain reaction. Twenty-eight distinct mitochondrial DNA haplotypes were detected and no common haplotypes were found among the species. All three species showed limited variability within populations, but strong differentiation among populations. Based on haplotype frequencies, genetic diversity within populations (HS) averaged 0.22, and population differentiation (GST and θ) exceeded 0.78. Analysis of molecular variance also revealed that >90% of the variation resided among populations. For the purposes of genetic conservation and breeding programs, species and populations could be readily distinguished by unique haplotypes, often using the combination of only a few probes. Neighbor-joining phenograms, however, strongly disagreed with those based on allozymes, chloroplast DNA, and morphological traits. Thus, despite its diagnostic haplotypes, the genome appears to evolve via the rearrangement of multiple, convergent subgenomic domains.


1991 ◽  
Vol 11 (10) ◽  
pp. 4863-4875
Author(s):  
S V Iyer ◽  
D L Davis ◽  
S N Seal ◽  
J B Burch

We screened a chicken liver cDNA expression library with a probe spanning the distal region of the chicken vitellogenin II (VTGII) gene promoter and isolated clones for a transcription factor that we have named VBP (for vitellogenin gene-binding protein). VBP binds to one of the most important positive elements in the VTGII promoter and appears to play a pivotal role in the estrogen-dependent regulation of this gene. The protein sequence of VBP was deduced from a nearly full length cDNA copy and was found to contain a basic/zipper (bZIP) motif. As expected for a bZIP factor, VBP binds to its target DNA site as a dimer. Moreover, VBP is a stable dimer free in solution. A data base search revealed that VBP is related to rat DBP. However, despite the fact that the basic/hinge regions of VBP and DBP differ at only three amino acid positions, the DBP binding site in the rat albumin promoter is a relatively poor binding site for VBP. Thus, the optimal binding sites for VBP and DBP may be distinct. Similarities between the VBP and DBP leucine zippers are largely confined to only four of the seven helical spokes. Nevertheless, these leucine zippers are functionally compatible and appear to define a novel subfamily. In contrast to the bZIP regions, other portions of VBP and DBP are markedly different, as are the expression profiles for these two genes. In particular, expression of the VBP gene commences early in liver ontogeny and is not subject to circadian control.


Genetics ◽  
2000 ◽  
Vol 154 (4) ◽  
pp. 1497-1508 ◽  
Author(s):  
Hiroko Abe ◽  
Chikashi Shimoda

Abstract The Schizosaccharomyces pombe mei4+ gene encoding a forkhead transcription factor is necessary for the progression of meiosis and sporulation. We searched for novel meiotic genes, the expression of which is dependent on Mei4p, since only the spo6+ gene has been assigned to its targets. Six known genes responsible for meiotic recombination were examined by Northern blotting, but none were Mei4 dependent for transcription. We determined the important cis-acting element, designated FLEX, to which Mei4p can bind. The S. pombe genome sequence database (The Sanger Centre, UK) was scanned for the central core heptamer and its flanking 3′ sequence of FLEX composed of 17 nucleotides, and 10 candidate targets of Mei4 were selected. These contained a FLEX-like sequence in the 5′ upstream nontranslatable region within 1 kb of the initiation codon. Northern blotting confirmed that 9 of them, named mde1+ to mde9+, were transcriptionally induced during meiosis and were dependent on mei4+. Most mde genes have not been genetically defined yet, except for mde9+, which is identical to spn5+, which encodes one of the septin family of proteins. mde3+ and a related gene pit1+ encode proteins related to Saccharomyces cerevisiae Ime2. The double disruptant frequently produced asci having an abnormal number and size of spores, although it completed meiosis. We also found that the forkhead DNA-binding domain of Mei4p binds to the FLEX-like element in the putative promoter region of mei4 and that the maximum induction level of mei4 mRNA required functional mei4 activity. Furthermore, expression of a reporter gene driven by the authentic mei4 promoter was induced in vegetative cells by ectopic overproduction of Mei4p. These results suggest that mei4 transcription is positively autoregulated.


2008 ◽  
Vol 98 (4) ◽  
pp. 372-379 ◽  
Author(s):  
Lee A. Hadwiger

This mini-review points to the usefulness of the pea–Fusarium solani interaction in researching the biochemical and molecular aspects of the nonhost resistance components of peas. This interaction has been researched to evaluate the resistance roles of the phytoalexin, pisatin, the cuticle barrier, and the activation of the nonhost resistance response. Concurrently, evaluations of associated signaling processes and the tools possessed by the pathogen to contend with host obstacles were included. The properties of some pathogenesis-related genes of pea and their regulation and contribution to resistance are discussed. A proposed action of two biotic elicitors on both chromatin conformation and the architectural transcription factor, HMG A, is presented and includes time lines of events within the host immune response.


Development ◽  
2020 ◽  
Vol 147 (14) ◽  
pp. dev190330
Author(s):  
Brett R. Lancaster ◽  
James D. McGhee

ABSTRACTWe define a quantitative relationship between the affinity with which the intestine-specific GATA factor ELT-2 binds to cis-acting regulatory motifs and the resulting transcription of asp-1, a target gene representative of genes involved in Caenorhabditis elegans intestine differentiation. By establishing an experimental system that allows unknown parameters (e.g. the influence of chromatin) to effectively cancel out, we show that levels of asp-1 transcripts increase monotonically with increasing binding affinity of ELT-2 to variant promoter TGATAA sites. The shape of the response curve reveals that the product of the unbound ELT-2 concentration in vivo [i.e. (ELT-2free) or ELT-2 ‘activity’] and the largest ELT-XXTGATAAXX association constant (Kmax) lies between five and ten. We suggest that this (unitless) product [Kmax×(ELT-2free) or the equivalent product for any other transcription factor] provides an important quantitative descriptor of transcription-factor/regulatory-motif interaction in development, evolution and genetic disease. A more complicated model than simple binding affinity is necessary to explain the fact that ELT-2 appears to discriminate in vivo against equal-affinity binding sites that contain AGATAA instead of TGATAA.


Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 299
Author(s):  
Beatriz Bielsa ◽  
María Ángeles Sanz ◽  
María José Rubio-Cabetas

One of the challenges in rootstock breeding programs is the combination of tolerances to different abiotic stresses in new interspecific hybrids adapted to a wide range of environmental conditions. In this work, two Prunus L. rootstocks: Myrobalan ‘P.2175’ (P. cerasifera Ehrh.) and the almond × peach hybrid ‘Garnem’ (P. amygdalus Batsch × P. persica (L.) Batsch) were subjected to drought during 24 h to understand their drought response mechanisms. The study was conducted monitoring leaf water potential (LWP), stomatal conductance (gs), relative water content (RWC), and electrolyte leakage (EL); as well as the abscisic acid (ABA) content in roots. The relative expression of five drought-relative genes was also studied. The obtained results allowed examining the drought tolerance potential of ‘Garnem’ and Myrobalan ‘P.2175’, demonstrating the great potential of ‘Garnem’ as drought tolerance source in future selections in breeding. Furthermore, based on the obtained data, the transcription factor Myb25-like could be a good biomarker of drought sensitivity for use in Prunus rootstock breeding programs.


Author(s):  
Reginah Pheirim ◽  
Noren Singh Konjengbam ◽  
Mayurakshee Mahanta

Powdery mildew is caused by an obligate parasite Erysiphe pisi and considered as one of the most important constraints causing yield reductions in pea. Development and utilization of genetic resistance is acknowledged as the most effective, economic and environmental friendly method of control. Therefore, development of cultivars with improved resistance to biotic stresses is a primary goal of plant breeding programs throughout the world. Three monogenic sources er1, er2 and Er3 have been described to govern the powdery mildew disease resistance. Several markers have been reported linked to resistant genes at varying distances in different mapping populations. Genetic markers linked to the disease resistance gene make the breeding process more efficient for the use of Marker Assisted Selection (MAS) strategy to aid in obtaining a complete powdery mildew resistance in pea.


Development ◽  
2002 ◽  
Vol 129 (1) ◽  
pp. 155-166 ◽  
Author(s):  
Julien Ghislain ◽  
Carole Desmarquet-Trin-Dinh ◽  
Martine Jaegle ◽  
Dies Meijer ◽  
Patrick Charnay ◽  
...  

In Schwann cells (SC), myelination is controlled by the transcription factor gene Krox20/Egr2. Analysis of cis-acting elements governing Krox20 expression in SC revealed the existence of two separate elements. The first, designated immature Schwann cell element (ISE), was active in immature but not myelinating SC, whereas the second, designated myelinating Schwann cell element (MSE), was active from the onset of myelination to adulthood in myelinating SC. In vivo sciatic nerve regeneration experiments demonstrated that both elements were activated during this process, in an axon-dependent manner. Together the activity of these elements reproduced the profile of Krox20 expression during development and regeneration. Genetic studies showed that both elements were active in a Krox20 mutant background, while the activity of the MSE, but likely not of the ISE, required the POU domain transcription factor Oct6 at the time of myelination. The MSE was localised to a 1.3 kb fragment, 35 kb downstream of Krox20. The identification of multiple Oct6 binding sites within this fragment suggested that Oct6 directly controls Krox20 transcription. Taken together, these data indicate that, although Krox20 is expressed continuously from 15.5 dpc in SC, the regulation of its expression is a biphasic, axon-dependent phenomenon involving two cis-acting elements that act in succession during development. In addition, they provide insight into the complexity of the transcription factor regulatory network controlling myelination.


Sign in / Sign up

Export Citation Format

Share Document