scholarly journals Leaf Transcriptome Analysis of Broomcorn Millet Uncovers Key Genes and Pathways in Response to Sporisorium destruens

2021 ◽  
Vol 22 (17) ◽  
pp. 9542
Author(s):  
Fei Jin ◽  
Jiajia Liu ◽  
Enguo Wu ◽  
Pu Yang ◽  
Jinfeng Gao ◽  
...  

Broomcorn millet (Panicum miliaceum L.) affected by smut (caused by the pathogen Sporisorium destruens) has reduced production yields and quality. Determining the tolerance of broomcorn millet varieties is essential for smut control. This study focuses on the differences in the phenotypes, physiological characteristics, and transcriptomes of resistant and susceptible broomcorn millet varieties under Sporisorium destruens stress. In diseased broomcorn millet, the plant height and stem diameter were reduced, while the number of nodes increased. After infection, the activities of superoxide dismutase and peroxidase decreased, and malondialdehyde and relative chlorophyll content (SPAD) decreased. Transcriptome analysis showed 514 and 5452 differentially expressed genes (DEGs) in the resistant and susceptible varieties, respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs showed that pathways related to plant disease resistance, such as phenylpropanoid biosynthesis, plant–pathogen interaction, and plant hormone signal transduction, were significantly enriched. In addition, the transcriptome changes of cluster leaves and normal leaves in diseased broomcorn millet were analysed. Gene ontology and KEGG enrichment analyses indicated that photosynthesis played an important role in both varieties. These findings lay a foundation for future research on the molecular mechanism of the interaction between broomcorn millet and Sporisorium destruens.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xingbo Bian ◽  
Yan Zhao ◽  
Shengyuan Xiao ◽  
He Yang ◽  
Yongzhong Han ◽  
...  

Abstract Background Ginseng rusty root symptoms (GRS) is one of the primary diseases of ginseng. This disease leads to a severe decline in the quality of ginseng. It has been shown that the occurrence of GRS is associated with soil environmental degradation, which may involve changes in soil microbiology and physicochemical properties. Results In this study, GRS and healthy ginseng (HG) samples were used as experimental materials for comparative analysis of transcriptome and metabolome. Compared with those in HG samples, 949 metabolites and 9451 genes were significantly changed at the metabolic and transcriptional levels in diseased samples. The diseased tissues’ metabolic patterns changed, and the accumulation of various organic acids, alkaloids, alcohols and phenols in diseased tissues increased significantly. There were significant differences in the expression of genes involved in plant hormone signal transduction, phenylpropanoid biosynthesis, the peroxidase pathway, and the plant-pathogen interaction pathway. Conclusion The current study involved a comparative metabolome and transcriptome analysis of GRS and HG samples. Based on the findings at the transcriptional and metabolic levels, a mechanism model of the ginseng response to GRS was established. Our results provide new insights into ginseng’s response to GRS, which will reveal the potential molecular mechanisms of this disease in ginseng.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11965
Author(s):  
Dongqi Xue ◽  
Han Liu ◽  
Dong Wang ◽  
Yanna Gao ◽  
Zhiqi Jia

Late blight caused by Phytophthora infestans is one of the most devastating diseases in potatoes and tomatoes. At present, several late blight resistance genes have been mapped and cloned. To better understand the transcriptome changes during the incompatible interaction process between R3a and Avr3a, in this study, after spraying DEX, the leaves of MM-R3a-Avr3a and MM-Avr3a transgenic plants at different time points were used for comparative transcriptome analysis. A total of 7,324 repeated DEGs were detected in MM-R3a-Avr3a plants at 2-h and 6-h, and 729 genes were differentially expressed at 6-h compared with 2-h. Only 1,319 repeated DEGs were found in MM-Avr3a at 2-h and 6-h, of which 330 genes have the same expression pattern. Based on GO, KEGG and WCGNA analysis of DEGs, the phenylpropanoid biosynthesis, plant-pathogen interaction, and plant hormone signal transduction pathways were significantly up-regulated. Parts of the down-regulated DEGs were enriched in carbon metabolism and the photosynthesis process. Among these DEGs, most of the transcription factors, such as WRKY, MYB, and NAC, related to disease resistance or endogenous hormones SA and ET pathways, as well as PR, CML, SGT1 gene were also significantly induced. Our results provide transcriptome-wide insights into R3a and Avr3a-mediated incompatibility interaction.


2021 ◽  
Author(s):  
Xingbo Bian ◽  
Yan Zhao ◽  
Shengyuan Xiao ◽  
He Yang ◽  
Yongzhong Han ◽  
...  

Abstract Background: Ginseng rusty root symptoms (GRS) is one of the primary diseases of ginseng. It leads to a severe decline in the quality of ginseng. Results: Compared with Healthy ginseng (HG), 949 metabolites and 9451 genes in diseased tissues were significantly changed at the metabolic and transcription levels. The metabolic patterns of the diseased tissues changed significantly, and organic acids, alkaloids, alcohols, and phenols may play a vital role in the response of ginseng to this disease. There were significant differences in the expression of plant hormone signal transduction, phenylpropanoid biosynthesis, peroxidase pathway, and multiple genes in the plant-pathogen interaction pathway.Conclusion: The current study performed a comparative metabolome and transcriptome analysis of GRS and HG. Based on the findings at the transcriptional and metabolic levels, the mechanism model of ginseng response to rusty root symptoms was established. Our results provide new insights into ginseng's response to rusty root symptoms, which will help reveal the potential molecular mechanisms of this disease in ginseng.


2021 ◽  
Vol 154 ◽  
pp. 104221
Author(s):  
Jérémy Jacob ◽  
Nicolas Bossard ◽  
Thierry Bariac ◽  
Valery Terwilliger ◽  
Philippe Biron ◽  
...  

Genome ◽  
2021 ◽  
pp. 1-11
Author(s):  
Qi Chen ◽  
Wei Wang ◽  
Sameer Khanal ◽  
Jinlei Han ◽  
Mi Zhang ◽  
...  

Cotton (Gossypium L.) is the most important fiber crop worldwide. Here, transcriptome analysis was conducted on developing fibers of a G. mustelinum introgression line, IL9, and its recurrent parent, PD94042, at 17 and 21 days post-anthesis (dpa). Differentially expressed genes (DEGs) of PD94042 and IL9 were identified. Gene Ontology (GO) enrichment analysis showed that the annotated DEGs were rich in two main biological processes and two main molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis likewise showed that the annotated DEGs were mainly enriched in metabolic pathways and biosynthesis of secondary metabolites. In total, 52 DEGs were selected as candidate genes based on comparison of the DEGs and GO function annotation information. Quantitative real-time PCR (RT-qPCR) analysis results for 12 randomly selected DEGs were consistent with transcriptome analysis. SNP identification based on G. mustelinum chromatin segment introgression showed that 394 SNPs were identified in 268 DEGs, and two genes with known functions were identified within fiber strength quantitative trait loci (QTL) regions or near the confidence intervals. We identified 52 key genes potentially related to high fiber strength in a G. mustelinum introgression line and provided significant insights into the study of cotton fiber quality improvement.


Genomics ◽  
2019 ◽  
Vol 111 (6) ◽  
pp. 1474-1482 ◽  
Author(s):  
Savita Bains ◽  
Vasundhara Thakur ◽  
Jagdeep Kaur ◽  
Kashmir Singh ◽  
Ravneet Kaur

2021 ◽  
Vol 7 (12) ◽  
pp. 1024
Author(s):  
Fengxin Dong ◽  
Yihan Wang ◽  
Ming Tang

Poplars can be harmed by poplar canker. Inoculation with mycorrhizal fungi can improve the resistance of poplars to canker, but the molecular mechanism is still unclear. In this study, an aseptic inoculation system of L. bicolor–P. trichocarpa–B. dothidea was constructed, and transcriptome analysis was performed to investigate regulation by L. bicolor of the expression of genes in the roots of P. trichocarpa during the onset of B. dothidea infection, and a total of 3022 differentially expressed genes (DEGs) were identified. Weighted correlation network analysis (WGCNA) was performed on these DEGs, and 661 genes’ expressions were considered to be affected by inoculation with L. bicolor and B. dothidea. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that these 661 DEGs were involved in multiple pathways such as signal transduction, reactive oxygen metabolism, and plant-pathogen interaction. Inoculation with L. bicolor changed the gene expression pattern of the roots, evidencing its involvement in the disease resistance response of P. trichocarpa. This research reveals the mechanism of L. bicolor in inducing resistance to canker of P. trichocarpa at the molecular level and provides a theoretical basis for the practical application of mycorrhizal fungi to improve plant disease resistance.


Sign in / Sign up

Export Citation Format

Share Document