scholarly journals Potential Role of Soluble Toll-like Receptors 2 and 4 as Therapeutic Agents in Stroke and Brain Hemorrhage

2021 ◽  
Vol 22 (18) ◽  
pp. 9977
Author(s):  
Josh Lua ◽  
Kanishka Ekanayake ◽  
Madison Fangman ◽  
Sylvain Doré

Hemolysis is a physiological condition in which red blood cells (RBCs) lyse, releasing their contents into the extracellular environment. Hemolysis can be a manifestation of several diseases and conditions, such as sickle cell disease, hemorrhagic stroke, and trauma. Heme and hemoglobin are among the unique contents of RBCs that are released into the environment. Although these contents can cause oxidative stress, especially when oxidized in the extracellular environment, they can also initiate a proinflammatory response because they bind to receptors such as the Toll-like receptor (TLR) family. This review seeks to clarify the mechanism by which TLRs initiate a proinflammatory response to heme, hemoglobin, and their oxidized derivatives, as well as the possibility of using soluble TLRs (sTLRs) as therapeutic agents. Furthermore, this review explores the possibility of using sTLRs in hemorrhagic disorders in which mitigating inflammation is essential for clinical outcomes, including hemorrhagic stroke and its subtypes, intracerebral hemorrhage (ICH), and subarachnoid hemorrhage (SAH).

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Monica Molteni ◽  
Sabrina Gemma ◽  
Carlo Rossetti

Toll-like receptor 4 (TLR4) belongs to the family of pattern recognition receptors (PRRs). They are highly conserved receptors that recognize conserved pathogen-associated molecular patterns (PAMPs), thus representing the first line of defense against infections. TLR4 has been long recognized as the sensing receptor for gram-negative lipopolysaccharide (LPS). In addition, it also binds endogenous molecules produced as a result of tissue injury. Hence, TLR4 represents a key receptor on which both infectious and noninfectious stimuli converge to induce a proinflammatory response. TLR4-mediated inflammation, triggered by exogenous or endogenous ligands, is also involved in several acute and chronic diseases, having a pivotal role as amplifier of the inflammatory response. This review focuses on the research progress about the role of TLR4 activation in infectious and noninfectious (e.g., sterile) inflammation and the effects of TLR4 signaling in some pathological conditions.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2485
Author(s):  
Stephanie Sanders ◽  
Denise M. Herpai ◽  
Analiz Rodriguez ◽  
Yue Huang ◽  
Jeff Chou ◽  
...  

Glioblastoma (GBM) is the most aggressive malignant glioma. Therapeutic targeting of GBM is made more difficult due to its heterogeneity, resistance to treatment, and diffuse infiltration into the brain parenchyma. Better understanding of the tumor microenvironment should aid in finding more effective management of GBM. GBM-associated macrophages (GAM) comprise up to 30% of the GBM microenvironment. Therefore, exploration of GAM activity/function and their specific markers are important for developing new therapeutic agents. In this study, we identified and evaluated the expression of ALDH1A2 in the GBM microenvironment, and especially in M2 GAM, though it is also expressed in reactive astrocytes and multinucleated tumor cells. We demonstrated that M2 GAM highly express ALDH1A2 when compared to other ALDH1 family proteins. Additionally, GBM samples showed higher expression of ALDH1A2 when compared to low-grade gliomas (LGG), and this expression was increased upon tumor recurrence both at the gene and protein levels. We demonstrated that the enzymatic product of ALDH1A2, retinoic acid (RA), modulated the expression and activity of MMP-2 and MMP-9 in macrophages, but not in GBM tumor cells. Thus, the expression of ALDH1A2 may promote the progressive phenotype of GBM.


2020 ◽  
Vol 18 (3) ◽  
pp. 229-249 ◽  
Author(s):  
Ewa Trojan ◽  
Natalia Bryniarska ◽  
Monika Leśkiewicz ◽  
Magdalena Regulska ◽  
Katarzyna Chamera ◽  
...  

: Chronic inflammatory processes within the central nervous system (CNS) are in part responsible for the development of neurodegenerative and psychiatric diseases. These processes are associated with, among other things, the increased and disturbed activation of microglia and the elevated production of proinflammatory factors. Recent studies indicated that the disruption of the process of resolution of inflammation (RoI) may be the cause of CNS disorders. It is shown that the RoI is regulated by endogenous molecules called specialized pro-resolving mediators (SPMs), which interact with specific membrane receptors. Some SPMs activate formyl peptide receptors (FPRs), which belong to the family of seven-transmembrane G protein-coupled receptors. These receptors take part not only in the proinflammatory response but also in the resolution of the inflammation process. Therefore, the activation of FPRs might have complex consequences. : This review discusses the potential role of FPRs, and in particular the role of FPR2 subtype, in the brain under physiological and pathological conditions and their involvement in processes underlying neurodegenerative and psychiatric disorders as well as ischemia, the pathogenesis of which involves the dysfunction of inflammatory processes.


2021 ◽  
Vol 19 ◽  
Author(s):  
Ru Liu ◽  
Lei Sun ◽  
Yunfu Wang ◽  
Meng Jia ◽  
Qun Wang ◽  
...  

: Epilepsy is commonly recognized as a disease driven by generalized hyperexcited and hypersynchronous neural activity. Sodium-activated potassium channels (KNa channels), which are encoded by the Slo 2.2 and Slo 2.1 genes, are widely expressed in the central nervous system and considered as “brakes” to adjust neuronal adaptation through regulating action potential threshold or after-hyperpolarization under physiological condition. However, the variants in KNa channels, especially gain-of-function variants, have been found in several childhood epileptic conditions. Most previous studies focused on mapping the epileptic network on the macroscopic scale while ignoring the value of microscopic changes. Notably, paradoxical role of KNa channels working on individual neuron/microcircuit and the macroscopic epileptic expression highlights the importance of understanding epileptogenic network through combining microscopic and macroscopic methods. Here, we first illustrated the molecular and physiological function of KNa channels on preclinical seizure models and patients with epilepsy. Next, we summarized current hypothesis on the potential role of KNa channels during seizures to provide essential insight into what emerged as a micro-macro disconnection at different levels. Additionally, we highlighted the potential utility of KNa channels as therapeutic targets for developing innovative anti-seizure medications.


TH Open ◽  
2020 ◽  
Vol 04 (04) ◽  
pp. e288-e299
Author(s):  
Galit H. Frydman ◽  
Michael B. Streiff ◽  
Jean M. Connors ◽  
Gregory Piazza

AbstractSARS-CoV-2 infection (COVID-19) results in local and systemic activation of inflammation and coagulation. In this review article, we will discuss the potential role of coagulation factor Xa (FXa) in the pathophysiology of COVID-19. FXa, a serine protease, has been shown to play a role in the cleavage of SARS-CoV-1 spike protein (SP), with the inhibition of FXa resulting in the inhibition of viral infectivity. FX is known to be primarily produced in the liver, but it is also expressed by multiple cells types, including alveolar epithelium, cardiac myocytes, and macrophages. Considering that patients with preexisting conditions, including cardiopulmonary disease, are at an increased risk of severe COVID-19, we discuss the potential role of increased levels of FX in these patients, resulting in a potential increased propensity to have a higher infectious rate and viral load, increased activation of coagulation and inflammation, and development of fibrosis. With these observations in mind, we postulate as to the potential therapeutic role of FXa inhibitors as a prophylactic and therapeutic treatment for high-risk patients with COVID-19.


2019 ◽  
Vol 11 (3) ◽  
pp. 687-696 ◽  
Author(s):  
Javaria Munir ◽  
Mihye Lee ◽  
Seongho Ryu

ABSTRACT Exosomes are membrane-bound organelles generally secreted by eukaryotic cells that contain mRNAs, microRNAs, and/or proteins. However, recent studies have reported the isolation of these particles from foods such as lemon, ginger, and milk. Owing to their absorption by intestinal cells and further travel via the bloodstream, exosomes can reach distant organs and affect overall health in both infants and adults. The potential role of food-derived exosomes (FDEs) in alleviating diseases, as well as in modulating the gut microbiota has been shown, but the underlying mechanism is still unknown. Moreover, exosomes may provide biocompatible vehicles for the delivery of anti-cancer drugs, such as doxorubicin. Thus, exosomes may allow medical nutritionists and clinicians to develop safe and targeted therapies for the treatment of various pathologies. The present review introduces FDEs and their contents, highlights their role in disease and infant/adult health, and explores their potential use as therapeutic agents.


Sign in / Sign up

Export Citation Format

Share Document