scholarly journals Two Novel C-Terminus RUNX2 Mutations in Two Cleidocranial Dysplasia (CCD) Patients Impairing p53 Expression

2021 ◽  
Vol 22 (19) ◽  
pp. 10336
Author(s):  
Luca Dalle Carbonare ◽  
Franco Antoniazzi ◽  
Alberto Gandini ◽  
Silvia Orsi ◽  
Jessica Bertacco ◽  
...  

Cleidocranial dysplasia (CCD), a dominantly inherited skeletal disease, is characterized by a variable phenotype ranging from dental alterations to severe skeletal defects. Either de novo or inherited mutations in the RUNX2 gene have been identified in most CCD patients. Transcription factor RUNX2, the osteogenic master gene, plays a central role in the commitment of mesenchymal stem cells to osteoblast lineage. With the aim to analyse the effects of RUNX2 mutations in CCD patients, we investigated RUNX2 gene expression and the osteogenic potential of two CCD patients’ cells. In addition, with the aim to better understand how RUNX2 mutations interfere with osteogenic differentiation, we performed string analyses to identify proteins interacting with RUNX2 and analysed p53 expression levels. Our findings demonstrated for the first time that, in addition to the alteration of downstream gene expression, RUNX2 mutations impair p53 expression affecting osteogenic maturation. In conclusion, the present work provides new insights into the role of RUNX2 mutations in CCD patients and suggests that an in-depth analysis of the RUNX2-associated gene network may contribute to better understand the complex molecular and phenotypic alterations in mutant subjects.

2020 ◽  
Vol 27 (11) ◽  
pp. 647-656
Author(s):  
Stephanie Espiard ◽  
Ludivine Drougat ◽  
Nikolaos Settas ◽  
Sara Haydar ◽  
Kerstin Bathon ◽  
...  

Genetic variants in components of the protein kinase A (PKA) enzyme have been associated with various defects and neoplasms in the context of Carney complex (CNC) and in isolated cases, such as in primary pigmented nodular adrenocortical disease (PPNAD), cortisol-producing adrenal adenomas (CPAs), and various cancers. PRKAR1A mutations have been found in subjects with impaired cAMP-dependent signaling and skeletal defects; bone tumors also develop in both humans and mice with PKA abnormalities. We studied the PRKACB gene in 148 subjects with PPNAD and related disorders, who did not have other PKA-related defects and identified two subjects with possibly pathogenic PRKACB gene variants and unusual bone and endocrine phenotypes. The first presented with bone and other abnormalities and carried a de novo c.858_860GAA (p.K286del) variant. The second subject carried the c.899C>T (p.T300M or p.T347M in another isoform) variant and had a PPNAD-like phenotype. Both variants are highly conserved in the PRKACB gene. In functional studies, the p.K286del variant affected PRKACB protein stability and led to increased PKA signaling. The p.T300M variant did not affect protein stability or response to cAMP and its pathogenicity remains uncertain. We conclude that PRKACB germline variants are uncommon but may be associated with phenotypes that resemble those of other PKA-related defects. However, detailed investigation of each variant is needed as PRKACB appears to be only rarely affected in these conditions, and variants such as p.T300M maybe proven to be clinically insignificant, whereas others (such as p.K286del) are clearly pathogenic and may be responsible for a novel syndrome, associated with endocrine and skeletal abnormalities.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 324
Author(s):  
Matthias Deutsch ◽  
Anne Günther ◽  
Rodrigo Lerchundi ◽  
Christine R. Rose ◽  
Sabine Balfanz ◽  
...  

Uncovering the physiological role of individual proteins that are part of the intricate process of cellular signaling is often a complex and challenging task. A straightforward strategy of studying a protein’s function is by manipulating the expression rate of its gene. In recent years, the Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9-based technology was established as a powerful gene-editing tool for generating sequence specific changes in proliferating cells. However, obtaining homogeneous populations of transgenic post-mitotic neurons by CRISPR/Cas9 turned out to be challenging. These constraints can be partially overcome by CRISPR interference (CRISPRi), which mediates the inhibition of gene expression by competing with the transcription machinery for promoter binding and, thus, transcription initiation. Notably, CRISPR/Cas is only one of several described approaches for the manipulation of gene expression. Here, we targeted neurons with recombinant Adeno-associated viruses to induce either CRISPRi or RNA interference (RNAi), a well-established method for impairing de novo protein biosynthesis by using cellular regulatory mechanisms that induce the degradation of pre-existing mRNA. We specifically targeted hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels, which are widely expressed in neuronal tissues and play essential physiological roles in maintaining biophysical characteristics in neurons. Both of the strategies reduced the expression levels of three HCN isoforms (HCN1, 2, and 4) with high specificity. Furthermore, detailed analysis revealed that the knock-down of just a single HCN isoform (HCN4) in hippocampal neurons did not affect basic electrical parameters of transduced neurons, whereas substantial changes emerged in HCN-current specific properties.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2273
Author(s):  
Menelaos Kavouras ◽  
Emmanouil E. Malandrakis ◽  
Ewout Blom ◽  
Kyriaki Tsilika ◽  
Theodoros Danis ◽  
...  

In farmed flatfish, such as common sole, color disturbances are common. Dyschromia is a general term that includes the color defects on the blind and ocular sides of the fish. The purpose was to examine the difference in gene expression between normal pigmented and juveniles who present ambicoloration. The analysis was carried out with next-generation sequencing techniques and de novo assembly of the transcriptome. Transcripts that showed significant differences (FDR < 0.05) in the expression between the two groups, were related to those of zebrafish (Danio rerio), functionally identified, and classified into categories of the gene ontology. The results revealed that ambicolorated juveniles exhibit a divergent function, mainly of the central nervous system at the synaptic level, as well as the ionic channels. The close association of chromophore cells with the growth of nerve cells and the nervous system was recorded. The pathway, glutamate binding–activation of AMPA and NMDA receptors–long-term stimulation of postsynaptic potential–LTP (long term potentiation)–plasticity of synapses, appears to be affected. In addition, the development of synapses also seems to be affected by the interaction of the LGI (leucine-rich glioma inactivated) protein family with the ADAM (a disintegrin and metalloprotease) ones.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Daniel Stribling ◽  
Peter L. Chang ◽  
Justin E. Dalton ◽  
Christopher A. Conow ◽  
Malcolm Rosenthal ◽  
...  

Abstract Objectives Arachnids have fascinating and unique biology, particularly for questions on sex differences and behavior, creating the potential for development of powerful emerging models in this group. Recent advances in genomic techniques have paved the way for a significant increase in the breadth of genomic studies in non-model organisms. One growing area of research is comparative transcriptomics. When phylogenetic relationships to model organisms are known, comparative genomic studies provide context for analysis of homologous genes and pathways. The goal of this study was to lay the groundwork for comparative transcriptomics of sex differences in the brain of wolf spiders, a non-model organism of the pyhlum Euarthropoda, by generating transcriptomes and analyzing gene expression. Data description To examine sex-differential gene expression, short read transcript sequencing and de novo transcriptome assembly were performed. Messenger RNA was isolated from brain tissue of male and female subadult and mature wolf spiders (Schizocosa ocreata). The raw data consist of sequences for the two different life stages in each sex. Computational analyses on these data include de novo transcriptome assembly and differential expression analyses. Sample-specific and combined transcriptomes, gene annotations, and differential expression results are described in this data note and are available from publicly-available databases.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Stephan Payr ◽  
Elizabeth Rosado-Balmayor ◽  
Thomas Tiefenboeck ◽  
Tim Schuseil ◽  
Marina Unger ◽  
...  

Abstract Background The aim of this study was the investigation of the osteogenic potential of human osteoblasts of advanced donor age in 2D and 3D culture. Methods Osteoblasts were induced to osteogenic differentiation and cultivated, using the same polystyrene material in 2D and 3D culture for 2 weeks. Samples were taken to evaluate alkaline phosphatase (ALP) activity, mineralization and gene expression. Results Osteoprotegerin (OPG) levels were significantly increased (8.2-fold) on day 7 in 3D compared to day 0 (p < 0.0001) and 11.6-fold higher in 3D than in 2D (p < 0.0001). Both culture systems showed reduced osteocalcin (OC) levels (2D 85% and 3D 50% of basic value). Collagen type 1 (Col1) expression was elevated in 3D on day 7 (1.4-fold; p = 0.009). Osteopontin (OP) expression showed 6.5-fold higher levels on day 7 (p = 0.002) in 3D than in 2D. Mineralization was significantly higher in 3D on day 14 (p = 0.0002). Conclusion Advanced donor age human primary osteoblasts reveal significantly higher gene expression levels of OPG, Col1 and OP in 3D than in monolayer. Therefore, it seems that a relatively high potential of bone formation in a natural 3D arrangement is presumably still present in osteoblasts of elderly people. Trial registration 5217/11 on the 22nd of Dec. 2011.


Genome ◽  
2020 ◽  
pp. 1-11
Author(s):  
Bahar Patlar ◽  
Alberto Civetta

It has long been acknowledged that changes in the regulation of gene expression may account for major organismal differences. However, we still do not fully understand how changes in gene expression evolve and how do such changes influence organisms’ differences. We are even less aware of the impact such changes might have in restricting gene flow between species. Here, we focus on studies of gene expression and speciation in the Drosophila model. We review studies that have identified gene interactions in post-mating reproductive isolation and speciation, particularly those that modulate male gene expression. We also address studies that have experimentally manipulated changes in gene expression to test their effect in post-mating reproductive isolation. We highlight the need for a more in-depth analysis of the role of selection causing disrupted gene expression of such candidate genes in sterile/inviable hybrids. Moreover, we discuss the relevance to incorporate more routinely assays that simultaneously evaluate the potential effects of environmental factors and genetic background in modulating plastic responses in male genes and their potential role in speciation.


2002 ◽  
Vol 76 (15) ◽  
pp. 7578-7586 ◽  
Author(s):  
Bodil Øster ◽  
Per Höllsberg

ABSTRACT Herpesvirus gene expression is divided into immediate-early (IE) or α genes, early (E) or β genes, and late (L) or γ genes on the basis of temporal expression and dependency on other gene products. By using real-time PCR, we have investigated the expression of 35 human herpesvirus 6B (HHV-6B) genes in T cells infected by strain PL-1. Kinetic analysis and dependency on de novo protein synthesis and viral DNA polymerase activity suggest that the HHV-6B genes segregate into six separate kinetic groups. The genes expressed early (groups I and II) and late (groups V and VI) corresponded well with IE and L genes, whereas the intermediate groups III and IV contained E and L genes. Although HHV-6B has characteristics similar to those of other roseoloviruses in its overall gene regulation, we detected three B-variant-specific IE genes. Moreover, genes that were independent of de novo protein synthesis clustered in an area of the viral genome that has the lowest identity to the HHV-6A variant. The organization of IE genes in an area of the genome that differs from that of HHV-6A underscores the distinct differences between HHV-6B and HHV-6A and may provide a basis for further molecular and immunological analyses to elucidate their different biological behaviors.


2002 ◽  
Vol 87 (3) ◽  
pp. 1129-1133 ◽  
Author(s):  
Johannes D. Veldhuis ◽  
George Zhang ◽  
James C. Garmey

Polycystic ovarian syndrome (anovulatory hyperandrogenism) is marked by adolescent onset of systemic hyperinsulinism, oligoovulation, hirsutism, excessive LH and androgen secretion, and variable reduction in fertility. Insulin and LH are believed to act in concert to promote ovarian androgen hypersecretion in this disorder. Administration of troglitazone, an insulin-sensitizing agent and putative PPARγ agonist, can decrease hyperinsulinism, suppress T production, and ameliorate oligoovulation in some women with this endocrinopathy. The present study tests the hypothesis that troglitazone directly inhibits de novo androgen biosynthesis stimulated jointly by LH and insulin in primary cultures of (porcine) thecal cells. We show that troglitazone dose-dependently antagonizes LH/insulin’s combined stimulation of androstenedione and T production by thecal cells in vitro. Consistent steroidogenic inhibition of 80–95% was achieved at drug concentrations of 3–6.8 μm (P &lt; 0.001). Exposure of thecal cells to the thiazolidinedione derivative also blocked bihormonally stimulated accumulation of CYP17 (cytochrome P450 17 α-hydroxylase/C17–20 lyase) gene expression, as reflected by decreased accumulation of cognate heterogeneous nuclear RNA and mRNA (by 30–65%; P &lt; 0.05). Moreover, troglitazone suppressed LH/insulin-induced phosphorylation of the 52-kDa immunoprecipitated CYP17 enzyme by 88% (P &lt; 0.001). A putative natural agonist of PPARγ nuclear transcription, 15-deoxy-δ-12,14-prostaglandin J2, also inhibited LH/insulin-driven androstenedione biosynthesis and CYP17 gene expression in thecal cells. In conclusion, a synthetic thiazolidinedione (troglitazone) and a natural ligand of PPARγ (15-deoxy-δ-12,14-prostaglandin J2) effectively impede the concerted stimulation by LH and insulin of in vitro thecal cell androgen production, CYP17 gene expression, and CYP17 protein phosphorylation. This ensemble of inhibitory actions on LH/insulin-stimulated steroidogenesis offers a plausible mechanistic basis for at least part of the observed clinical efficacy of troglitazone in mitigating androgen excess in women with polycystic ovarian syndrome.


2015 ◽  
Vol 172 (6) ◽  
pp. 803-811 ◽  
Author(s):  
Maya B Lodish ◽  
Bo Yuan ◽  
Isaac Levy ◽  
Glenn D Braunstein ◽  
Charalampos Lyssikatos ◽  
...  

ObjectiveWe have recently reported five patients with bilateral adrenocortical hyperplasia (BAH) and Cushing's syndrome (CS) caused by constitutive activation of the catalytic subunit of protein kinase A (PRKACA). By doing new in-depth analysis of their cytogenetic abnormality, we attempted a better genotype–phenotype correlation of theirPRKACAamplification.DesignThis study is a case series.MethodsMolecular cytogenetic, genomic, clinical, and histopathological analyses were performed in five patients with CS.ResultsReinvestigation of the defects of previously described patients by state-of-the-art molecular cytogenetics showed complex genomic rearrangements in the chromosome 19p13.2p13.12 locus, resulting in copy number gains encompassing the entirePRKACAgene; three patients (one sporadic case and two related cases) were observed with gains consistent with duplications, while two sporadic patients were observed with gains consistent with triplications. Although all five patients presented with ACTH-independent CS, the three sporadic patients had micronodular BAH and underwent bilateral adrenalectomy in early childhood, whereas the two related patients, a mother and a son, presented with macronodular BAH as adults. In at least one patient,PRKACAtriplication was associated with a more severe phenotype.ConclusionsConstitutional chromosomalPRKACAgene amplification is a recently identified genetic defect associated with CS, a trait that may be inherited in an autosomal dominant manner or occurde novo. Genomic rearrangements can be complex and can result in different copy number states of dosage-sensitive genes, e.g., duplication and triplication.PRKACAamplification can lead to variable phenotypes clinically and pathologically, both micro- and macro-nodular BAH, the latter of which we speculate may depend on the extent of amplification.


Sign in / Sign up

Export Citation Format

Share Document