scholarly journals PPARγ and TGFβ—Major Regulators of Metabolism, Inflammation, and Fibrosis in the Lungs and Kidneys

2021 ◽  
Vol 22 (19) ◽  
pp. 10431
Author(s):  
Gábor Kökény ◽  
Laurent Calvier ◽  
Georg Hansmann

Peroxisome proliferator-activated receptor gamma (PPARγ) is a type II nuclear receptor, initially recognized in adipose tissue for its role in fatty acid storage and glucose metabolism. It promotes lipid uptake and adipogenesis by increasing insulin sensitivity and adiponectin release. Later, PPARγ was implicated in cardiac development and in critical conditions such as pulmonary arterial hypertension (PAH) and kidney failure. Recently, a cluster of different papers linked PPARγ signaling with another superfamily, the transforming growth factor beta (TGFβ), and its receptors, all of which play a major role in PAH and kidney failure. TGFβ is a multifunctional cytokine that drives inflammation, fibrosis, and cell differentiation while PPARγ activation reverses these adverse events in many models. Such opposite biological effects emphasize the delicate balance and complex crosstalk between PPARγ and TGFβ. Based on solid experimental and clinical evidence, the present review summarizes connections and their implications for PAH and kidney failure, highlighting the similarities and differences between lung and kidney mechanisms as well as discussing the therapeutic potential of PPARγ agonist pioglitazone.

2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Erja-Leena Paukkeri ◽  
Antti Pekurinen ◽  
Eeva Moilanen

AbstractPeroxisome proliferator-activated receptor (PPAR) agonists, fibrates and thiazolidinediones, are commonly used drugs in the treatment of dyslipidemia and diabetes. Their targets, PPARα and PPARγ, have also been shown to have a role in the regulation of inflammatory responses linking metabolism and inflammation. In the present study we investigated the effects of PPAR agonists on macrophage activation. In addition to the proinflammatory classical activation, we also focused on interleukin (IL) 4 and 13 -induced alternative activation which is a significant macrophage phenotype in tissue repairing processes and in fibrosing diseases. PPARα agonists GW7647 and fenofibrate as well as PPARγ agonist GW1929 inhibited lipopolysaccharide-induced classical macrophage activation and production of the characteristic biomarkers of this phenotype, i.e. IL-6 and nitric oxide, in murine J774 macrophages. Remarkably, the PPARα agonists also inhibited IL-4 and IL-13 –induced expression of alternative activation markers arginase-1, fizz1 and mannose receptor 1 whereas the PPARγ agonist GW1929 enhanced their expression in J774 macrophages. The PPARα agonists GW7647 and fenofibrate also attenuated the production of alternative activation markers chemokine (C-C motif) ligand 13 and plateletderived growth factor in human THP-1 macrophages. The present findings show that PPARα and PPARγ agonists differently regulate classical and alternative macrophage phenotypes. Furthermore, PPARα activation was introduced as a novel concept to down-regulate alternative macrophage activation indicating that PPARα agonists have therapeutic potential in conditions associated with aberrant alternative macrophage activation such as fibrosing diseases.


2010 ◽  
Vol 31 (1) ◽  
pp. 200-211 ◽  
Author(s):  
Nektaria Nicolakakis ◽  
Tahar Aboulkassim ◽  
Antonio Aliaga ◽  
Xin-Kang Tong ◽  
Pedro Rosa-Neto ◽  
...  

The roles of chronic brain hypoperfusion and transforming growth factor-beta 1 (TGF-β1) in Alzheimer's disease (AD) are unresolved. We investigated the interplay between TGF-β1, cerebrovascular function, and cognition using transgenic TGF mice featuring astrocytic TGF-β1 overexpression. We further assessed the impact of short, late therapy in elderly animals with the antioxidant N-acetyl–cysteine (NAC) or the peroxisome proliferator-activated receptor-γ agonist pioglitazone. The latter was also administered to pups as a prophylactic 1-year treatment. Elderly TGF mice featured cerebrovascular dysfunction that was not remedied with NAC. In contrast, pioglitazone prevented or reversed this deficit, and rescued the impaired neurovascular coupling response to whisker stimulation, although it failed to normalize the vascular structure. In aged TGF mice, neuronal and cognitive indices—the stimulus-evoked neurometabolic response, cortical cholinergic innervation, and spatial memory in the Morris water maze—were intact. Our findings show that impaired brain hemodynamics and cerebrovascular function are not accompanied by memory impairment in this model. Conceivably in AD, they constitute aggravating factors against a background of aging and underlying pathology. Our data further highlight the ability of pioglitazone to protect the cerebrovasculature marked by TGF-β1 increase, aging, fibrosis, and antioxidant resistance, thus of high relevance for AD patients.


2021 ◽  
Vol 22 (13) ◽  
pp. 6907
Author(s):  
Maria L. Lozano ◽  
Cristina Segú-Vergés ◽  
Mireia Coma ◽  
María T. Álvarez-Roman ◽  
José R. González-Porras ◽  
...  

Eltrombopag is a thrombopoietin receptor (MPL) agonist approved for the treatment of primary immune thrombocytopenia (ITP). Recent evidence shows that some patients may sustain platelet counts following eltrombopag discontinuation. The systemic immunomodulatory response that resolves ITP in some patients could result from an increase in platelet mass, caused either by the direct action of eltrombopag on megakaryocytes through MPL stimulation, or potential MPL-independent actions on other cell types. To uncover the possible mechanisms of action of eltrombopag, in silico analyses were performed, including a systems biology-based approach, a therapeutic performance mapping system, and structural analyses. Through manual curation of the available bibliography, 56 key proteins were identified and integrated into the ITP interactome analysis. Mathematical models (94.92% mean accuracy) were obtained to elucidate potential MPL-dependent pathways in non-megakaryocytic cell subtypes. In addition to the effects on megakaryocytes and platelet numbers, the results were consistent with MPL-mediated effects on other cells, which could involve interferon-gamma, transforming growth factor-beta, peroxisome proliferator-activated receptor-gamma, and forkhead box protein P3 pathways. Structural analyses indicated that effects on three apoptosis-related proteins (BCL2L1, BCL2, BAX) from the Bcl-2 family may be off-target effects of eltrombopag. In conclusion, this study proposes new hypotheses regarding the immunomodulatory functions of eltrombopag in patients with ITP.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Bojiang Chen ◽  
Yu Zhang ◽  
Sisi Dai ◽  
Ping Zhou ◽  
Wenxin Luo ◽  
...  

AbstractPrimary pulmonary lymphoepithelioma-like carcinoma (pLELC) is a rare non-small cell lung cancer (NSCLC) subtype. Clinical features have been described in our previous report, but molecular characteristics remain unclear. Herein, pLELC genomic features were explored. Among 41,574 lung cancers, 128 pLELCs and 162 non-pLELC NSCLCs were enrolled. Programmed cell death ligand 1 (PD-L1) and protein 53 (p53) expression was detected in 47 surgically resected pLELC samples by immunohistochemical assays. Multiomics genomic analyses, including whole-genome sequencing (WGS), RNA whole-transcriptome sequencing (RNA-seq), and Epstein-Barr virus (EBV) integration analyses, were performed on eight frozen pLELC tissues and compared with 50 lung adenocarcinomas (LUADs) and 50 lung squamous cell carcinomas (LUSCs) from The Cancer Genome Atlas (TCGA) and another 26 EBV-positive nasopharynx cancers (EBV+-NPCs). Progression-free survival (PFS) and overall survival (OS) of pLELC patients were better than those of non-pLELC patients. High PD-L1 or p53 expression was associated with extended disease-free survival (DFS). pLELC had 14 frequently mutated genes (FMGs). Somatically mutated genes and enrichment of genetic lesions were found, which differed from observations in LUAD, LUSC, and EBV+-nasopharyngeal carcinoma (NPC). Three tumor-associated genes, zinc finger and BTB domain-containing 16 (ZBTB16), peroxisome proliferator activated receptor gamma (PPARG), and transforming growth factor beta receptor 2 (TGFBR2), were downregulated with copy number variation (CNV) loss. EBV was prone to integrating into intergenic and intronic regions with two upregulated miR-BamH1-A rightward transcripts (BARTs), BART5-3P and BART20-3P. Our findings reveal that pLELC has a distinct genomic signature. Three tumor-associated genes with CNV loss and two miR-BARTs might be involved in pLELC tumorigenesis.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Shaozhang Hou ◽  
Ting Zhang ◽  
Yuan Li ◽  
Fengying Guo ◽  
Xiu Jin

Diabetic nephropathy (DN) is a major cause of end-stage renal disease (ESRD). Glycyrrhizic acid (GA) is an effective inhibitor of reactive oxygen species (ROS) production. We investigated the role of GA in the progression of renal injury in DN. Albumin (Alb)/creatinine (crea) levels were significantly lower, and renal histopathology was attenuated in the diabetic db/db mice that were treated with GA (15 mg/kg via intraperitoneal injection) once per day for eight weeks. These changes were associated with significantly lower levels of α-smooth muscle actin (α-SMA) and transforming growth factor β1 (TGF-β1) expression. Additionally, diabetic db/db mice displayed more terminal deoxynucleotidyl transferase-mediated nick-end labeling- (TUNEL-) positive nuclei and diabetes-induced ROS production in the kidneys, and these effects were attenuated by the treatment with GA, which activated adenosine monophosphate-activated protein kinase (AMPK)/silent information regulator 1 (SIRT1)/peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) signaling in the kidneys. In summary, in diabetic db/db mice, the effect of GA on DN involved, in part, the inhibition of ROS and the activation of AMPK/SIRT1/PGC-1α signaling in the kidneys. GA, therefore, shows therapeutic potential for preventing and treating DN.


2007 ◽  
Vol 32 (5) ◽  
pp. 921-929 ◽  
Author(s):  
Robin N. Michel ◽  
Eva R. Chin ◽  
Joe V. Chakkalakal ◽  
Joe K. Eibl ◽  
Bernard J. Jasmin

Ca2+ signalling plays an important role in excitation–contraction coupling and the resultant force output of skeletal muscle. It is also known to play a crucial role in modulating both short- and long-term muscle cellular phenotypic adaptations associated with these events. Ca2+ signalling via the Ca2+/calmodulin (CaM)-dependent phosphatase calcineurin (CnA) and via Ca2+/CaM-dependent kinases, such as CaMKI and CaMKII, is known to regulate hypertrophic growth in response to overload, to direct slow versus fast fibre gene expression, and to contribute to mitochondrial biogenesis. The CnA- and CaMK-dependent regulation of the downstream transcription factors nuclear factor of activated T cells (NFAT) and myocyte-specific enhancer factor 2 are known to activate muscle-specific genes associated with a slower, more oxidative fibre phenotype. We have also recently shown the expression of utrophin A, a cytoskeletal protein that accumulates at the neuromuscular junction and plays a role in maturation of the postsynaptic apparatus, to be regulated by CnA–NFAT and Ca2+/CaM signalling. This regulation is fibre-type specific and potentiated by interactions with the transcriptional regulators and coactivators GA binding protein (also known as nuclear respiratory factor 2) and peroxisome proliferator-activated receptor-gamma coactivator 1 alpha. Another downstream target of CnA signalling may be myostatin, a transforming growth factor-β family member that is a negative regulator of muscle growth. While the list of the downstream targets of CnA/NFAT- and Ca2+/CaM-dependent signalling is emerging, the precise interaction of these pathways with the Ca2+-independent pathways p38 mitogen-activated protein kinase, extracellular signal-regulated kinases 1 and 2, phosphoinositide-3 kinase, and protein kinase B (Akt/PKB) must also be considered when deciphering fibre responses and plasticity to altered contractile load.


Author(s):  
Rana A. Alaaeddine ◽  
Perihan A. Elzahhar ◽  
Ibrahim AlZaim ◽  
Wassim Abou-Kheir ◽  
Ahmed S.F. Belal ◽  
...  

: Emerging evidence supports an intertwining framework for the involvement of different inflammatory pathways in a common pathological background for a number of disorders. Of importance are pathways involving arachidonic acid metabolism by cyclooxygenase-2 (COX-2) and 15-lipoxygenase (15-LOX). Both enzyme activities and their products are implicated in a range of pathophysiological processes encompassing metabolic impairment leading to adipose inflammation and the subsequent vascular and neurological disorders, in addition to various pro-and anti-tumorigenic effects. A further layer of complexity is encountered by the disparate, and often reciprocal, modulatory effect COX-2 and 15-LOX activities and metabolites exert on each other or on other cellular targets, the most prominent of which is peroxisome proliferator-activated receptor gamma (PPARγ). Thus, effective therapeutic intervention with such multifaceted disorders requires the simultaneous modulation of more than one target. Here, we describe the role of COX-2, 15-LOX, and PPARγ in cancer and complications of metabolic disorders, highlight the value of designing multi-target directed ligands (MTDLs) modifying their activity, and summarize the available literature regarding the rationale and feasibility of design and synthesis of these ligands together with their known biological effects. We speculate on the potential impact of MTDLs in these disorders as well as emphasize the need for structured future effort to translate these early results facilitating the adoption of these, and similar, molecules in clinical research.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 734
Author(s):  
Pietro Antonuccio ◽  
Herbert Ryan Marini ◽  
Antonio Micali ◽  
Carmelo Romeo ◽  
Roberta Granese ◽  
...  

Varicocele is an age-related disease with no current medical treatments positively impacting infertility. Toll-like receptor 4 (TLR4) expression is present in normal testis with an involvement in the immunological reactions. The role of peroxisome proliferator-activated receptor-α (PPAR-α), a nuclear receptor, in fertility is still unclear. N-Palmitoylethanolamide (PEA), an emerging nutraceutical compound present in plants and animal foods, is an endogenous PPAR-α agonist with well-demonstrated anti-inflammatory and analgesics characteristics. In this model of mice varicocele, PPAR-α and TLR4 receptors’ roles were investigated through the administration of ultra-micronized PEA (PEA-um). Male wild-type (WT), PPAR-α knockout (KO), and TLR4 KO mice were used. A group underwent sham operation and administration of vehicle or PEA-um (10 mg/kg i.p.) for 21 days. Another group (WT, PPAR-α KO, and TLR4 KO) underwent surgical varicocele and was treated with vehicle or PEA-um (10 mg/kg i.p.) for 21 days. At the end of treatments, all animals were euthanized. Both operated and contralateral testes were processed for histological and morphometric assessment, for PPAR-α, TLR4, occludin, and claudin-11 immunohistochemistry and for PPAR-α, TLR4, transforming growth factor-beta3 (TGF-β3), phospho-extracellular signal-Regulated-Kinase (p-ERK) 1/2, and nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) Western blot analysis. Collectively, our data showed that administration of PEA-um revealed a key role of PPAR-α and TLR4 in varicocele pathophysiology, unmasking new nutraceutical therapeutic targets for future varicocele research and supporting surgical management of male infertility.


Sign in / Sign up

Export Citation Format

Share Document