scholarly journals Butein and Frondoside-A Combination Exhibits Additive Anti-Cancer Effects on Tumor Cell Viability, Colony Growth, and Invasion and Synergism on Endothelial Cell Migration

2021 ◽  
Vol 23 (1) ◽  
pp. 431
Author(s):  
Shahrazad Sulaiman ◽  
Kholoud Arafat ◽  
Aya Mudhafar Al-Azawi ◽  
Noura Abdulraouf AlMarzooqi ◽  
Shamsa Nasser Ali Hussain Lootah ◽  
...  

Despite the significant advances in targeted- and immuno-therapies, lung and breast cancer are at the top list of cancer incidence and mortality worldwide as of 2020. Combination therapy consisting of a mixture of different drugs taken at once is currently the main approach in cancer management. Natural compounds are extensively investigated for their promising anti-cancer potential. This study explored the anti-cancer potential of butein, a biologically active flavonoid, on two major solid tumors, namely, A549 lung and MDA-MB-231 breast cancer cells alone and in combination with another natural anti-cancer compound, frondoside-A. We demonstrated that butein decreases A549 and MDA-MB-231 cancer cell viability and colony growth in vitro in addition to tumor growth on chick embryo chorioallantoic membrane (CAM) in vivo without inducing any noticeable toxicity. Additionally, non-toxic concentrations of butein significantly reduced the migration and invasion of both cell lines, suggesting its potential anti-metastatic effect. We showed that butein anti-cancer effects are due, at least in part, to a potent inhibition of STAT3 phosphorylation, leading to PARP cleavage and consequently cell death. Moreover, we demonstrated that combining butein with frondoside-A leads to additive effects on inhibiting A549 and MDA-MB-231 cellular viability, induction of caspase 3/7 activity, inhibition of colony growth, and inhibition of cellular migration and invasion. This combination reached a synergistic effect on the inhibition of HUVECs migration in vitro. Collectively, this study provides sufficient rationale to further carry out animal studies to confirm the relevance of these compounds’ combination in cancer therapy.

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2204
Author(s):  
Meng-Die Yang ◽  
Yang Sun ◽  
Wen-Jun Zhou ◽  
Xiao-Zheng Xie ◽  
Qian-Mei Zhou ◽  
...  

Triple-negative breast cancer (TNBC) is a refractory type of breast cancer that does not yet have clinically effective drugs. The aim of this study is to investigate the synergistic effects and mechanisms of resveratrol combined with cisplatin on human breast cancer MDA-MB-231 (MDA231) cell viability, migration, and invasion in vivo and in vitro. In vitro, MTS assays showed that resveratrol combined with cisplatin inhibits cell viability as a concentration-dependent manner, and produced synergistic effects (CI < 1). Transwell assay showed that the combined treatment inhibits TGF-β1-induced cell migration and invasion. Immunofluorescence assays confirmed that resveratrol upregulated E-cadherin expression and downregulated vimentin expression. Western blot assay demonstrated that resveratrol combined with cisplatin significantly reduced the expression of fibronectin, vimentin, P-AKT, P-PI3K, P-JNK, P-ERK, Sma2, and Smad3 induced by TGF-β1 (p < 0.05), and increased the expression of E-cadherin (p < 0.05), respectively. In vivo, resveratrol enhanced tumor growth inhibition and reduced body weight loss and kidney function impairment by cisplatin in MDA231 xenografts, and significantly reduced the expressions of P-AKT, P-PI3K, Smad2, Smad3, P-JNK, P-ERK, and NF-κB in tumor tissues (p < 0.05). These results indicated that resveratrol combined with cisplatin inhibits the viability of breast cancer MDA231 cells synergistically, and inhibits MDA231 cells invasion and migration through Epithelial-mesenchymal transition (EMT) approach, and resveratrol enhanced anti-tumor effect and reduced side of cisplatin in MDA231 xenografts. The mechanism may be involved in the regulations of PI3K/AKT, JNK, ERK and NF-κB expressions.


2020 ◽  
Author(s):  
Jing Zhang ◽  
Chunhua Xiao ◽  
Zhenbo Feng ◽  
Yun Gong ◽  
Baohua Sun ◽  
...  

Abstract Purpose Increasing evidence has shown that the transcription factor SOX4 is closely associated with the development and progression of many malignant tumors. However, the effect of SOX4 on breast cancer is unclear. In this study, we purposed to investigate the role of SOX4 in the growth and metastasis in breast cancer and the underlying mechanism. Moreover, the effect of SOX4 on cancer cell resistance to chemotherapeutic agents was also evaluated in vitro and in vivo . Methods We used lentivirus technique to ectopically express SOX4 in MDA-MB-231 and SUM149 cells or knockdown SOX4 in BT474 cells, and examined the effect of these changes on various cellular functions. MTT assay was used to determine the cell viability as well as resistance to chemotherapeutic agents. The regulation of SOX4 on epithelial-mesenchymal transition (EMT)-related genes was analyzed using qRT-PCR. The binding of SOX4 to the CXCR7 gene was demonstrated using chromatin immunoprecipitation assay and dual-luciferase reporter activity assay. The effect of SOX4/CXCR7 axis on metastasis was examined using Transwell migration and Matrigel invasion assays. The expression of SOX4/CXCR7 in primary tumors and metastatic foci in lymph nodes was assessed using immunohistochemistry. Cellular morphology was investigated under phase contrast microscope and transmission electron microscopy. Moreover, the effect of SOX4 on tumor growth, metastasis, and resistance to chemotherapy was also studied in vivo by using bioluminescent imaging. Results SOX4 increased breast cancer cell viability, migration, and invasion in vitro and enhanced tumor growth and metastasis in vivo . It regulated EMT-related genes and bound to CXCR7 promoter to upregulate CXCR7 transcription. Both SOX4 and CXCR7 were highly expressed in human primary tumors and metastatic foci in lymph nodes. Treatment of breast cancer cells with the CXCR7 inhibitor CCX771 reversed the SOX4 effect on cell migration and invasion. Ectopic expression of SOX4 increased the susceptibility of cells to paclitaxel. Conclusions SOX4 plays an important role in the growth and metastasis of breast cancer. SOX4/CXCR7 may serve as potential therapeutic targets for the treatment. Paclitaxel may be a good therapeutic option if the expression level of SOX4 is high.


2019 ◽  
pp. 1-6
Author(s):  
Gangping WANG ◽  
Gangping WANG ◽  
Huifang Shi ◽  
Jingjing Li ◽  
Lei Chen ◽  
...  

Breast cancer is one of the commonly-encountered malignant tumors, and its morbidity is on the rise year by year. A better understanding of the molecular mechanisms of breast cancer is important. This can improve the prevention, diagnosis, and treatment.The miR-142‐3p has been shown to inhibit carcinogenesis by regulating various cellular processes, including cell cycle progression, cell migration, apoptosis, and invasion. We surgically recruited 96 breast cancer patients and the breast cancer samples, each with matched adjacent normal breast tissue were obtained, MDA-MB-231 and MCF-7 cells were cultured for experiments in vitro and measured the expression of miR‐142‐3p via quantitative real‐time polymerase chain reaction (qRT‐PCR). Cell viability, apoptosis, migration, and invasion were determined by MTT, flow cytometry, and trans-well assays. The expression of miR-142-3p was down-regulated in both cancer cell lines and cancer specimens. The reduced expression of miR-142‐3p was associated with tumor size, lymph node metastasis, and tumor-node-metastasis (TNM) stage of patients (p<0.05). However, there was no significant correlation between miR‐142‐3p expression in tumor tissues with age at diagnosis (p>0.05). Overexpression of miR-142-3p repressed cell viability, migration, and invasion, while it induced apoptosis, whereas its depletion promoted it. The results suggest miR‐142‐3p acts as a tumor suppressor and can act as a novel target for the treatment of breast cancer. Thus, restoration of miR‐142‐3p expression, for example, via miRNA replacement therapy, may represent an effective strategy for the treatment of breast cancer patients


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jing Zhang ◽  
Chunhua Xiao ◽  
Zhenbo Feng ◽  
Yun Gong ◽  
Baohua Sun ◽  
...  

Abstract Purpose Increasing evidence has shown that the transcription factor SOX4 is closely associated with the development and progression of many malignant tumors. However, the effect of SOX4 on breast cancer is unclear. In this study, we purposed to investigate the role of SOX4 in the growth and metastasis in breast cancer and the underlying mechanism. Moreover, the effect of SOX4 on cancer cell resistance to chemotherapeutic agents was also evaluated in vitro and in vivo. Methods We used lentivirus technique to ectopically express SOX4 in MDA-MB-231 and SUM149 cells or knockdown SOX4 in BT474 cells, and examined the effect of these changes on various cellular functions. MTT assay was used to determine the cell viability as well as resistance to chemotherapeutic agents. The regulation of SOX4 on epithelial-mesenchymal transition (EMT)-related genes was analyzed using qRT-PCR. The binding of SOX4 to the CXCR7 gene was demonstrated using chromatin immunoprecipitation assay and dual-luciferase reporter activity assay. The effect of SOX4/CXCR7 axis on metastasis was examined using Transwell migration and Matrigel invasion assays. The expression of SOX4/CXCR7 in primary tumors and metastatic foci in lymph nodes was assessed using immunohistochemistry. Cellular morphology was investigated under phase contrast microscope and transmission electron microscopy. Moreover, the effect of SOX4 on tumor growth, metastasis, and resistance to chemotherapy was also studied in vivo by using bioluminescent imaging. Results SOX4 increased breast cancer cell viability, migration, and invasion in vitro and enhanced tumor growth and metastasis in vivo. It regulated EMT-related genes and bound to CXCR7 promoter to upregulate CXCR7 transcription. Both SOX4 and CXCR7 were highly expressed in human primary tumors and metastatic foci in lymph nodes. Treatment of breast cancer cells with the CXCR7 inhibitor CCX771 reversed the SOX4 effect on cell migration and invasion. Ectopic expression of SOX4 increased the susceptibility of cells to paclitaxel. Conclusions SOX4 plays an important role in the growth and metastasis of breast cancer. SOX4/CXCR7 may serve as potential therapeutic targets for the treatment. Paclitaxel may be a good therapeutic option if the expression level of SOX4 is high.


2021 ◽  
Vol 22 (22) ◽  
pp. 12553
Author(s):  
Aya Al-Azawi ◽  
Shahrazad Sulaiman ◽  
Kholoud Arafat ◽  
Javed Yasin ◽  
Abderrahim Nemmar ◽  
...  

Metabolic reprogramming has been recognized as an essential emerging cancer hallmark. Dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase (PDK), has been reported to have anti-cancer effects by reversing tumor-associated glycolysis. This study was performed to explore the anti-cancer potential of DCA in lung cancer alone and in combination with chemo- and targeted therapies using two non-small cell lung cancer (NSCLC) cell lines, namely, A549 and LNM35. DCA markedly caused a concentration- and time-dependent decrease in the viability and colony growth of A549 and LNM35 cells in vitro. DCA also reduced the growth of tumor xenografts in both a chick embryo chorioallantoic membrane and nude mice models in vivo. Furthermore, DCA decreased the angiogenic capacity of human umbilical vein endothelial cells in vitro. On the other hand, DCA did not inhibit the in vitro cellular migration and invasion and the in vivo incidence and growth of axillary lymph nodes metastases in nude mice. Treatment with DCA did not show any toxicity in chick embryos and nude mice. Finally, we demonstrated that DCA significantly enhanced the anti-cancer effect of cisplatin in LNM35. In addition, the combination of DCA with gefitinib or erlotinib leads to additive effects on the inhibition of LNM35 colony growth after seven days of treatment and to synergistic effects on the inhibition of A549 colony growth after 14 days of treatment. Collectively, this study demonstrates that DCA is a safe and promising therapeutic agent for lung cancer.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Huiqing Li ◽  
Zhenzhen Ma ◽  
Yunlong Lei

Abstract Background Opioid receptors are implicated in cell proliferation and cancer migration. However, the effects and underlying mechanisms of opioid receptor κ (OPRK1) in breast cancer remain unknown. Methods Small interfering RNA (siRNAs) was used to knockdown the expression of OPRK1. Western blot was used to determine the protein expression and reverse transcription-quantitative PCR (RT-qPCR) determined the genes transcription. Cell viability was detected by MTT assay and cell death rates were determined by Annexin V/PI and flow cytometry. Cell migration and invasion were detected by wound healing analysis and transwell assay, respectively. Results Our research demonstrated that OPRK1 was overexpressed in breast cancer cells compared with the normal human mammary epithelial cells. OPRK1 knockdown could inhibited cell viability and migration in cancer cells, accompanied with the decreased proteins and genes expression of N-cadherin, Snail, MMP2 and Vimentin, while the E-cadherin expression was increased. Additionally, OPRK1 knockdown also promoted PI3K/AKT signaling inactivation. Activation of AKT reversed the OPRK1 knockdown-induced cell viability inhibition and migration suppression, while inhibition of AKT reduced cell viability and promoted cell death. Conclusions Our findings illustrated the role of OPRK1 played on promoting migration in vitro, and we also provided the therapeutic research of OPRK1 knockdown combined with AKT inhibition.


2020 ◽  
Author(s):  
Jing Zhang ◽  
Chunhua Xiao ◽  
Zhenbo Feng ◽  
Yun Gong ◽  
Baohua Sun ◽  
...  

Abstract Purpose Increasing evidence has shown that the transcription factor SOX4 is closely associated with the development and progression of many malignant tumors. However, the effect of SOX4 on breast cancer is unclear. In this study, we purposed to investigate the role of SOX4 in the growth and metastasis in breast cancer and the underlying mechanism. Moreover, the effect of SOX4 on cancer cell resistance to chemotherapeutic agents was also evaluated in vitro and in vivo . Methods We used lentivirus technique to ectopically express SOX4 in MDA-MB-231 and SUM149 cells or knockdown SOX4 in BT474 cells, and examined the effect of these changes on various cellular functions. MTT assay was used to determine the cell viability as well as resistance to chemotherapeutic agents. The regulation of SOX4 on epithelial-mesenchymal transition (EMT)-related genes was analyzed using qRT-PCR. The binding of SOX4 to the CXCR7 gene was demonstrated using chromatin immunoprecipitation assay. The effect of SOX4/CXCR7 axis on metastasis was examined using Transwell migration and Matrigel invasion assays. The expression of SOX4/CXCR7 in primary tumors and metastatic foci in lymph nodes was assessed using immunohistochemistry. Cellular morphology was investigated under phase contrast microscope and transmission electron microscopy. Moreover, the effect of SOX4 on tumor growth, metastasis, and resistance to chemotherapy was also studied in vivo by using bioluminescent imaging. Results SOX4 increased breast cancer cell viability, migration, and invasion in vitro and enhanced tumor growth and metastasis in vivo . It regulated EMT-related genes and bound to CXCR7 promoter to upregulate CXCR7 transcription. Both SOX4 and CXCR7 were highly expressed in human primary tumors and metastatic foci in lymph nodes. Treatment of breast cancer cells with the CXCR7 inhibitor CCX771 reversed the SOX4 effect on cell migration and invasion. Ectopic expression of SOX4 increased the susceptibility of cells to paclitaxel. Conclusions SOX4 plays an important role in the growth and metastasis of breast cancer. SOX4/CXCR7 may serve as potential therapeutic targets for the treatment. Paclitaxel may be a good therapeutic option if the expression level of SOX4 is high.


2019 ◽  
Vol 19 (2) ◽  
pp. 265-275 ◽  
Author(s):  
Faeze Khalili ◽  
Sara Akrami ◽  
Malihe Safavi ◽  
Maryam Mohammadi-Khanaposhtani ◽  
Mina Saeedi ◽  
...  

Background: This paper reports synthesis, cytotoxic activity, and apoptosis inducing effect of a novel series of styrylimidazo[1,2-a]pyridine derivatives. Objective: In this study, anti-cancer activity of novel styrylimidazo[1,2-a]pyridines was evaluated. Methods: Styrylimidazo[1,2-a]pyridine derivatives 4a-o were synthesized through a one-pot three-component reaction of 2-aminopyridines, cinnamaldehydes, and isocyanides in high yield. All synthesized compounds 4a-o were evaluated against breast cancer cell lines including MDA-MB-231, MCF-7, and T-47D using MTT assay. Apoptosis was evaluated by acridine orange/ethidium bromide staining, cell cycle analysis, and TUNEL assay as the mechanism of cell death. Results: Most of the synthesized compounds exhibited more potent cytotoxicity than standard drug, etoposide. Induction of apoptosis by the most cytotoxic compounds 4f, 4g, 4j, 4n, and 4m was confirmed through mentioned methods. Conclusion: In conclusion, these results confirmed the potency of styrylimidazo[1,2-a]pyridines for further drug discovery developments in the field of anti-cancer agents.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Farnaz Dabbagh Moghaddam ◽  
Iman Akbarzadeh ◽  
Ehsan Marzbankia ◽  
Mahsa Farid ◽  
Leila khaledi ◽  
...  

Abstract Background Melittin, a peptide component of honey bee venom, is an appealing candidate for cancer therapy. In the current study, melittin, melittin-loaded niosome, and empty niosome had been optimized and the anticancer effect assessed in vitro on 4T1 and SKBR3 breast cell lines and in vivo on BALB/C inbred mice. "Thin-layer hydration method" was used for preparing the niosomes; different niosomal formulations of melittin were prepared and characterized in terms of morphology, size, polydispersity index, encapsulation efficiency, release kinetics, and stability. A niosome was formulated and loaded with melittin as a promising drug carrier system for chemotherapy of the breast cancer cells. Hemolysis, apoptosis, cell cytotoxicity, invasion and migration of selected concentrations of melittin, and melittin-loaded niosome were evaluated on 4T1 and SKBR3 cells using hemolytic activity assay, flow cytometry, MTT assay, soft agar colony assay, and wound healing assay. Real-time PCR was used to determine the gene expression. 40 BALB/c inbred mice were used; then, the histopathology, P53 immunohistochemical assay and estimate of renal and liver enzyme activity for all groups had been done. Results This study showed melittin-loaded niosome is an excellent substitute in breast cancer treatment due to enhanced targeting, encapsulation efficiency, PDI, and release rate and shows a high anticancer effect on cell lines. The melittin-loaded niosome affects the genes expression by studied cells were higher than other samples; down-regulates the expression of Bcl2, MMP2, and MMP9 genes while they up-regulate the expression of Bax, Caspase3 and Caspase9 genes. They have also enhanced the apoptosis rate and inhibited cell migration, invasion in both cell lines compared to the melittin samples. Results of histopathology showed reduce mitosis index, invasion and pleomorphism in melittin-loaded niosome. Renal and hepatic biomarker activity did not significantly differ in melittin-loaded niosome and melittin compared to healthy control. In immunohistochemistry, P53 expression did not show a significant change in all groups. Conclusions Our study successfully declares that melittin-loaded niosome had more anti-cancer effects than free melittin. This project has demonstrated that niosomes are suitable vesicle carriers for melittin, compare to the free form.


Sign in / Sign up

Export Citation Format

Share Document