scholarly journals Differential Physio-Biochemical and Metabolic Responses of Peanut (Arachis hypogaea L.) under Multiple Abiotic Stress Conditions

2022 ◽  
Vol 23 (2) ◽  
pp. 660
Author(s):  
Jaykumar Patel ◽  
Deepesh Khandwal ◽  
Babita Choudhary ◽  
Dolly Ardeshana ◽  
Rajesh Kumar Jha ◽  
...  

The frequency and severity of extreme climatic conditions such as drought, salinity, cold, and heat are increasing due to climate change. Moreover, in the field, plants are affected by multiple abiotic stresses simultaneously or sequentially. Thus, it is imperative to compare the effects of stress combinations on crop plants relative to individual stresses. This study investigated the differential regulation of physio-biochemical and metabolomics parameters in peanut (Arachis hypogaea L.) under individual (salt, drought, cold, and heat) and combined stress treatments using multivariate correlation analysis. The results showed that combined heat, salt, and drought stress compounds the stress effect of individual stresses. Combined stresses that included heat had the highest electrolyte leakage and lowest relative water content. Lipid peroxidation and chlorophyll contents did not significantly change under combined stresses. Biochemical parameters, such as free amino acids, polyphenol, starch, and sugars, significantly changed under combined stresses compared to individual stresses. Free amino acids increased under combined stresses that included heat; starch, sugars, and polyphenols increased under combined stresses that included drought; proline concentration increased under combined stresses that included salt. Metabolomics data that were obtained under different individual and combined stresses can be used to identify molecular phenotypes that are involved in the acclimation response of plants under changing abiotic stress conditions. Peanut metabolomics identified 160 metabolites, including amino acids, sugars, sugar alcohols, organic acids, fatty acids, sugar acids, and other organic compounds. Pathway enrichment analysis revealed that abiotic stresses significantly affected amino acid, amino sugar, and sugar metabolism. The stress treatments affected the metabolites that were associated with the tricarboxylic acid (TCA) and urea cycles and associated amino acid biosynthesis pathway intermediates. Principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), and heatmap analysis identified potential marker metabolites (pinitol, malic acid, and xylopyranose) that were associated with abiotic stress combinations, which could be used in breeding efforts to develop peanut cultivars that are resilient to climate change. The study will also facilitate researchers to explore different stress indicators to identify resistant cultivars for future crop improvement programs.

1980 ◽  
Vol 7 (1) ◽  
pp. 32-37 ◽  
Author(s):  
S. M. M. Basha ◽  
J. P. Cherry ◽  
C. T. Young

Abstract Maturing seeds of six peanut cultivars (Arachis hypogaea L.) varying in protein content at maturity showed differences in rate of change of dry weight, crude protein, and free and total amino acids. Seeds of the high-protein cultivars increased in dry weight and deposited protein at a more rapid rate between immature and low intermediate stages of maturation than did those of the low- and intermediate-protein cultivars. Free amino acid content in seeds classified as low-intermediate maturity from all cultivars was significantly less than was that of those at the immature stage. The greatest change was in seed of the high-protein group. The rate of change of content of selected free amino acids among seed was different for the three groups of cultivars. Similar observations were noted as the content of select total amino acids increased in maturing seeds. Variations in quantities of free amino acids in immature seeds and differences in the rate at which they are incorporated into proteins of seeds from various cultivars suggest that there is genetic variability in the mechanism for synthesis of selected proteins. These differences also indicate the potential for the development of peanut cultivars having seed with nutritionally desirable protein.


Author(s):  
Nezahat Turfan ◽  
Aslı Kurnaz ◽  
Muhammet Karataşlı ◽  
Tahsin Özer ◽  
Şeref Turhan

A total of 42 Turkish peanuts (Arachis hypogaea L.) samples were analysed for their total free amino acid, β-carotene, lycopene, and flavonoid contents, and the total phenols, glucose, fructose and sucrose in the peanut samples were determined as nutrition aspects. The average values of the total free amino acid, beta-carotene, lycopene, glucose, fructose and sucrose were determined to be 14.4 µmol g−1, 14.4 µg (100 ml)−1, 14.4 µg (100 ml)−1, 1.07 mg g−1, 0.52 mg g−1 and 2.74 mg g−1, respectively. The results reveal that the consumption of Turkish peanut samples is safe and that they contain health-enhancing nutrients.


1975 ◽  
Vol 53 (22) ◽  
pp. 2639-2649 ◽  
Author(s):  
John P. Cherry ◽  
Clyde T. Young ◽  
Larry R. Beuchat

Protein and amino acid composition of peanuts (Arachis hypogaea L.) inoculated with Aspergillus parasiticus Speare were compared with those of non-infected seeds during an 18-day test period to determine metabolic changes within this interrelationship. The levels of buffer-soluble proteins of infected peanuts decreased rapidly to quantities much lower than those of non-infected seeds shortly after inoculation. Simultaneously, the levels of insoluble proteins increased to quantities greater than those contained in soluble fractions. Gel electrophoresis of soluble extracts from inoculated peanuts showed that proteins were hydrolyzed to many small-molecular-weight components, which eventually disappeared as fungal growth progressed. A corresponding increase in quantity of most free amino acids was observed shortly after inoculation of the peanuts. Major changes in free amino acid content coincided with substantial alterations of proteins in both soluble and insoluble fractions. These data suggested that inoculation of peanuts with A. parasiticus initiated a sequence of events whereby proteins were hydrolyzed first to small polypeptides and (or) insoluble components, then to free amino acids. After extended periods of infection, levels of free amino acids varied from day to day, suggesting that differential utilization of these components by the fungus was occurring. Quantities of total amino acids in whole seeds and soluble and insoluble fractions were different for non-inoculated and inoculated peanuts. Distinct differences were especially notable among samples of these three fractions of inoculated seeds. Differences in total amino acid contents apparently reflect qualitative and quantitative changes in proteins and (or) polypeptides present in various fractions examined during the infection period.


2020 ◽  
Vol 11 ◽  
Author(s):  
Demissew Tesfaye Teshome ◽  
Godfrey Elijah Zharare ◽  
Sanushka Naidoo

Plants encounter several biotic and abiotic stresses, usually in combination. This results in major economic losses in agriculture and forestry every year. Climate change aggravates the adverse effects of combined stresses and increases such losses. Trees suffer even more from the recurrence of biotic and abiotic stress combinations owing to their long lifecycle. Despite the effort to study the damage from individual stress factors, less attention has been given to the effect of the complex interactions between multiple biotic and abiotic stresses. In this review, we assess the importance, impact, and mitigation strategies of climate change driven interactions between biotic and abiotic stresses in forestry. The ecological and economic importance of biotic and abiotic stresses under different combinations is highlighted by their contribution to the decline of the global forest area through their direct and indirect roles in forest loss and to the decline of biodiversity resulting from local extinction of endangered species of trees, emission of biogenic volatile organic compounds, and reduction in the productivity and quality of forest products and services. The abiotic stress factors such as high temperature and drought increase forest disease and insect pest outbreaks, decrease the growth of trees, and cause tree mortality. Reports of massive tree mortality events caused by “hotter droughts” are increasing all over the world, affecting several genera of trees including some of the most important genera in plantation forests, such as Pine, Poplar, and Eucalyptus. While the biotic stress factors such as insect pests, pathogens, and parasitic plants have been reported to be associated with many of these mortality events, a considerable number of the reports have not taken into account the contribution of such biotic factors. The available mitigation strategies also tend to undermine the interactive effect under combined stresses. Thus, this discussion centers on mitigation strategies based on research and innovation, which build on models previously used to curb individual stresses.


1982 ◽  
Vol 9 (1) ◽  
pp. 44-46 ◽  
Author(s):  
Allan R. Hovis ◽  
Clyde T. Young ◽  
Peter Y. P. Tai

Abstract Six peanut (Arachis hypogaea L.) varieties were analyzed for amino acid concentration among four consecutive sections across the two cotyledons. Significant differences were found among varieties (average 60% of total variation), among seeds (average 15% of total variation), and for some amino acids between sections (average 2.7% of total variation). With the exception of glutamic acid, proline, and histidine, varietal differences accounted for most of the variability found. Therefore, it appears that partial seed analysis for amino acids may be useful in genetic studies and for breeding selections.


1996 ◽  
Vol 23 (2) ◽  
pp. 111-116 ◽  
Author(s):  
D. T. Grimm ◽  
T. H. Sanders ◽  
H. E. Pattee ◽  
D. E. Williams ◽  
S. Sanchez-Dominguez

Abstract The biochemical composition of seed collected from six landrace accessions of Arachis hypogaea L. subsp. hypogaea var. hirsuta was investigated. Florida-grown runner- (cv. Florunner) and virginia-type (cv. NC 7) seed were used as comparative controls. Fatty acid methyl esters were prepared from hexane-extracted oil and analyzed by gas-liquid chromatography. Oil stability was determined using oxidative stability instrumentation. Tocopherols, free amino acids, and free sugars were analyzed by high-performance liquid chromatography. Total oil content ranged from 36-45% for var. hirsuta seed as compared to 46 and 45% for Florunner and NC 7, respectively. Oleic acid/linoleic acid ratios ranged from 0.76-0.95 for the var. hirsuta peanuts as compared to runner (1.71) and virginia (2.1) controls. Tocopherol levels for var. hirsuta (295-377 ppm in oil) were similar to NC 7 (30 ppm) and lower than Florunner (425 ppm). Oil quality characteristics were reflected in much shorter oil stability index times for var. hirsuta seed (5.9-8.0 hr) compared to Florunner (11.6 hr) and NC 7 (12.9 hr). In general, var. hirsuta peanuts contained more free sugars (141-178 μmol/g defatted meal) and free amino acids (18.5-37.2 μmol/g defatted meal) than Florunner (127 and 20.2 μmol/g defatted meal free sugars and free amino acids, respectively) or NC 7 (122 and 20.3 μmol/g defatted meal).


2020 ◽  
Vol 22 (9) ◽  
pp. 657-662 ◽  
Author(s):  
Mustafa Celik ◽  
Alper Şen ◽  
İsmail Koyuncu ◽  
Ataman Gönel

Aim and Objective:: To determine the mechanisms present in the etiopathogenesis of nasal polyposis. It is not clear whether amino acids contribute in a causal way to the development of the disease. Therefore, the aim of this study was to determine the plasma-free amino acid profile in patients with nasal polyposis and to compare the results with a healthy control group. Materials and Methods:: This was a prospective controlled study that took place in the Otolaryngology Department at the Harran University Faculty of Medicine between April 2017 and April 2018. Plasmafree amino acid profile levels were studied in serum samples taken from a patient group and a healthy control group. Patients who were diagnosed with bilateral diffuse nasal polyposis and were scheduled for surgical interventions were included in this study. Individuals whose age, gender, and body mass index values were compatible with that of the patient group and who did not have any health problems were included in the control group. All the participants whose levels of plasma-free amino acid were thought to be affected by one or more of the following factors were excluded from the study: smoking and alcohol use, allergic rhinitis presence, the presence of acute or chronic sinusitis, a history of endoscopic sinus surgery, unilateral nasal masses, a history of chronic drug use, systemic or topical steroid use in the last three months for any reason, and liver, kidney, hematological, cardiovascular, metabolic, neurological, or psychiatric disorders or malignancies. Results: In patients with nasal polyposis, 3-methyl histidine (3-MHIS: nasal polyposis group (ng) = 3.22 (1.92 – 6.07); control group (cg) = 1.21 (0.77 – 1.68); p = 0.001); arginine (arg: ng = 98.95 (70.81 – 117.75); cg = 75.10 (54.49 – 79.88); p = 0.005); asparagine (asn: ng = 79.84 (57.50 – 101.44); cg = 60.66 (46.39 – 74.62); p = 0.021); citrulline (cit: ng = 51.83 (43.81 – 59.78); cg = 38.33 (27.81 – 53.73); p = 0.038); cystine (cys: ng = 4.29 (2.43 – 6.66); cg = 2.41 (1.51 – 4.16); p = 0.019); glutamic acid (glu: ng = 234.86 (128.75 – 286.66); cg = 152.37 (122.51 – 188.34); p = 0.045); histidine (his: ng = 94.19 (79.34 – 113.99); cg = 74.80 (62.76 – 98.91); p = 0.018); lysine (lys: ng = 297.22 (206.55 – 371.25); cg = 179.50 (151.58 – 238.02); p = 0.001); ornithine (ng = 160.62 (128.36 – 189.32); cg = 115.91 (97.03 – 159.91); p = 0.019); serine (ser: ng = 195.15 (151.58 – 253.07); cg = 83.07 (67.44 – 92.44); p = 0.001); taurine (tau: ng = 74.69 (47.00 – 112.13); cg = 53.14 (33.57 – 67.31); p = 0.006); tryptophan (trp: ng = 52.31 (33.81 – 80.11); cg = 34.44 (25.94 – 43.07); p = 0.005), homocitrulline (ng = 1.75 (1.27 – 2.59); cg = 0.00 (0.00 – 0.53); p = 0.001); norvaline (ng = 6.90 (5.61 – 9.18); cg = 4.93 (3.74 – 7.13); p = 0.021); argininosuccinic acid (ng = 14.33 (10.06 – 25.65); cg = 12.22 (5.77 – 16.87) p = 0.046); and plasma concentrations were significantly higher than in the healthy control group (p <0.05). However, the gamma-aminobutyric acid (gaba: ng = 0.16 (0.10 – 0.24); cg = 0.21 (0.19 – 0.29); p = 0.010) plasma concentration was significantly lower in the nasal polyposis group than in the healthy control group. Conclusion: In this study, plasma levels of 15 free amino acids were significantly higher in the nasal polyposis group than in the healthy control group. A plasma level of 1 free amino acid was found to be significantly lower in the nasal polyposis group compared to the healthy control group. Therefore, it is important to determine the possibility of using the information obtained to prevent the recurrence of the condition and to develop effective treatment strategies. This study may be a milestone for studies of this subject. However, this study needs to be confirmed by further studies conducted in a larger series.


2021 ◽  
Vol 19 (1) ◽  
pp. 35-43
Author(s):  
Awatsaya Chotekajorn ◽  
Takuyu Hashiguchi ◽  
Masatsugu Hashiguchi ◽  
Hidenori Tanaka ◽  
Ryo Akashi

AbstractWild soybean (Glycine soja) is a valuable genetic resource for soybean improvement. Seed composition profiles provide beneficial information for the effective conservation and utilization of wild soybeans. Therefore, this study aimed to assess the variation in free amino acid abundance in the seeds of wild soybean germplasm collected in Japan. The free amino acid content in the seeds from 316 accessions of wild soybean ranged from 0.965 to 5.987 mg/g seed dry weight (DW), representing a 6.2-fold difference. Three amino acids had the highest coefficient of variation (CV): asparagine (1.15), histidine (0.95) and glutamine (0.94). Arginine (0.775 mg/g DW) was the predominant amino acid in wild soybean seeds, whereas the least abundant seed amino acid was glutamine (0.008 mg/g DW). A correlation network revealed significant positive relationships among most amino acids. Wild soybean seeds from different regions of origin had significantly different levels of several amino acids. In addition, a significant correlation between latitude and longitude of the collection sites and the total free amino acid content of seeds was observed. Our study reports diverse phenotypic data on the free amino acid content in seeds of wild soybean resources collected from throughout Japan. This information will be useful in conservation programmes for Japanese wild soybean and for the selection of accessions with favourable characteristics in future legume crop improvement efforts.


Sign in / Sign up

Export Citation Format

Share Document