scholarly journals Sensitivity of the Flow Number to Mix Factors of Hot-Mix Asphalt

2019 ◽  
Vol 4 (2) ◽  
pp. 34 ◽  
Author(s):  
Md Rashadul Islam ◽  
Sylvester A. Kalevela ◽  
Shelby K. Nesselhauf

In the design of pavement infrastructure, the flow number is used to determine the suitability of a hot-mix asphalt mixture (HMA) to resist permanent deformation when used in flexible pavement. This study investigates the sensitivity of the flow numbers to the mix factors of eleven categories of HMAs used in flexible pavements. A total of 105 specimens were studied for these eleven categories of HMAs. For each category of asphalt mixture, the variations in flow number for different contractors, binder types, effective binder contents, air voids, voids in mineral aggregates, voids filled with asphalt, and asphalt contents were assessed statistically. The results show that the flow numbers for different types of HMA used in Colorado vary from 47 to 2272. The same mix may have statistically different flow numbers, regardless of the contractor. The flow number increases with increasing effective binder content, air voids, voids in mineral aggregates, voids filled with asphalt, and asphalt content in the study range of these parameters.

2012 ◽  
Vol 39 (7) ◽  
pp. 824-833 ◽  
Author(s):  
Sangyum Lee ◽  
Cheolmin Baek ◽  
Je-Jin Park

This paper presents the performance evaluation of unmodified and lime-modified hot mix asphalt (HMA) mixtures at varying asphalt content using asphalt mixture performance test developed from National Cooperative Highway Research Program project 9-19 and 9-29 and the viscoelastic continuum damage finite element analysis. Test methods adopted in this study are the dynamic modulus test for stiffness, the triaxial repeated load permanent deformation test for rutting, and the direct tension test for fatigue cracking. The findings from this study support conventional understanding of the effects of asphalt content and lime modification on the fatigue cracking and rutting performance. Finally, the optimum asphalt content for both lime-modified and unmodified mixtures are proposed based on the knowledge gleaned from the performance-based mix design methodology. With additional validation and calibration, the comprehensive methodology described in this paper may serve as the foundation for a performance-based HMA mix design and performance-related HMA specifications.


2021 ◽  
Vol 39 (4) ◽  
pp. 1043-1049
Author(s):  
A.A. Murana ◽  
A.A. Abdulkarim ◽  
A.T. Olowosulu

This work evaluate the influence of waste pure water sachet (WPS) as a modifier in Hot Mix Asphalt (HMA). The properties of the constituent materials were determined. Modified HMA samples were prepared at varying concentration of 2, 4, 6, 8 and 10% WPS content by weight of the Optimum Binder Content (OBC). The properties of the modified HMA were determined using Marshall Method of mix design. The properties of the constituent materials showed that they are suitable for HMA production. The modified bitumen showed an increase in softening point (61 – 73.5%), flash point (258 – 2820C), fire point (289 – 3110C) and ductility (92.67 –118.67cm) as the WPS content increases from 2% to 10% while decrease in penetration (62.33 – 56.5mm) as WPS content increases from 2% to 6%. Stability and Bulk density increases from 4.64kN to 8.84kN and 2.21g/cm3 to 2.34g/cm3 respectively while flow, voids in mineral aggregates (VMA) and Air voids decreases from 3.6 to 2.98mm, 23.85 to 20.16% and 19.73 to 13.97% respectively as the WPS content was increased from 2 to 8%. An optimum polyethylene from WPS modifier content of 8% by weight of the OBC is  recommended for use in the HMA. Keywords: Bitumen, Hot Mix Asphalt, Pure Water Sachet, modified bitumen, Marshall Properties, Polyethylene.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4238
Author(s):  
Piotr Pokorski ◽  
Piotr Radziszewski ◽  
Michał Sarnowski

The paper presents the issue of resistance to permanent deformations of bridge pavements placed upon concrete bridge decks. In Europe, bridge asphalt pavement usually consists of a wearing course and a protective layer, which are placed over the insulation (waterproofing). Protective layers of bridge pavement are commonly constructed using low air void content asphalt mixes as this provides the suitable tightness of such layers. Due to increased binder content, asphalt mixes for bridge pavement may have reduced resistance to permanent deformations. The article presents test results of resistance to permanent deformations of asphalt mixes for the protective layers. In order to determine the composition of mixtures with low air void content and resistance to permanent deformation, an experimental design was applied using a new concept of asphalt mix composition. Twenty-seven different asphalt mixture compositions were analyzed. The mixtures varied in terms of binder content, sand content and grit ratio. Resistance to permanent deformation was tested using the laboratory uniaxial cyclic compression method (dynamic load creep). On the basis of experimental results and statistical analysis, the functions of asphalt mixture permanent deformation resistance were established. This enabled a determination of suitable mixture compositions for protective layers for concrete bridge decks.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2084 ◽  
Author(s):  
Piotr Mackiewicz ◽  
Antoni Szydło

We present two methods used in the identification of viscoelastic parameters of asphalt mixtures used in pavements. The static creep test and the dynamic test, with a frequency of 10 Hz, were carried out based on the four-point bending beam (4BP). In the method identifying viscoelastic parameters for the Brugers’ model, we included the course of a creeping curve (for static creep) and fatigue hysteresis (for dynamic test). It was shown that these parameters depend significantly on the load time, method used, and temperature and asphalt content. A similar variation of parameters depending on temperature was found for the two tests, but different absolute values were obtained. Additionally, the share of viscous deformations in relation to total deformations is presented, on the basis of back calculations and finite element methods. We obtained a significant contribution of viscous deformations (about 93% for the static test and 25% for the dynamic test) for the temperature 25 °C. The received rheological parameters from both methods appeared to be sensitive to a change in asphalt content, which means that these methods can be used to design an optimal asphalt mixture composition—e.g., due to the permanent deformation of pavement. We also found that the parameters should be determined using the creep curve for the static analyses with persistent load, whereas in the case of the dynamic studies, the hysteresis is more appropriate. The 4BP static creep and dynamic tests are sufficient methods for determining the rheological parameters for materials designed for flexible pavements. In the 4BP dynamic test, we determined relationships between damping and viscosity coefficients, showing material variability depending on the test temperature.


2015 ◽  
Vol 42 (11) ◽  
pp. 865-871 ◽  
Author(s):  
Babak Kazemi Darabadi ◽  
Hasan Taherkhani

Flaky particles, because of their shape, are considered as inferior aggregates in asphaltic mixtures, and specifications usually set limits on the amount of flaky particles in asphaltic mixtures. In this study, the effects of flaky particles content on the volumetric properties, Marshall Stability and creep behaviour of hot mixed asphaltic concrete have been investigated. Specimens with two different types of gradation and specified amounts of flaky particles were made and used for Marshall Stability and static creep tests. Test results show that the Marshall Stability decreases and the air voids content of asphaltic mixture and the voids in mineral aggregate increase as the flaky particles content increases. It is also found that flaky particles cause increase in permanent deformation and decrease in creep stiffness. The creep tests also show that the recoverable deformation of the mixtures decreases as the flaky particles content increases.


2012 ◽  
Vol 39 (8) ◽  
pp. 897-905 ◽  
Author(s):  
Aziz Salifu ◽  
Curtis Berthelot ◽  
Ania Anthony ◽  
Brent Marjerison

Many Saskatchewan provincial highways exhibit permanent deformation that is mostly attributed to reduction in air voids in hot mix asphalt concrete surfacing. The Saskatchewan Ministry of Highways and Infrastructure (MHI) currently use the Marshall compaction method for hot mix asphalt concrete (HMAC) design and placement quality control and quality assurance. It has been found that the Marshall compaction method does not accurately predict field air voids. Therefore, MHI identified the need to evaluate the SuperpaveTM gyratory compaction method to predict field air voids of typical Saskatchewan asphalt mixes. This paper presents a summary of laboratory and field volumetric as well as rapid triaxial mechanistic material properties of typical Saskatchewan asphalt mixes. This research considered seven asphalt mixes from the Radisson Specific Pavement Study (SPS)-9A test site comprising two conventional Saskatchewan Marshall Type 71 mixes, five SuperpaveTM mixes, and a SuperpaveTM recycled mix. This research determined that Marshall compaction and the gyratory compaction at 1.25° gyration angle underestimate the collapse of field air voids. This research also showed that the gyratory compaction method at 2.00° angle of gyration more accurately predicted field air voids of the asphalt mixes constructed as part of test site.


2021 ◽  
Vol 293 ◽  
pp. 02029
Author(s):  
Tang-Baoli ◽  
Ren-yongqiang ◽  
Chen-Xiangmei ◽  
Hou-Huifang ◽  
Liang-Jianping

In order to study the high temperature performance of LM-S modified asphalt mixture and SBS modified asphalt mixture, repeated loading creep test was used to study the influence of temperature and deviatoric stress on the axial permanent deformation of the two kinds of asphalt mixture. At the same time, Permanent deformation, ε@5000, flow number FN and creep rate were select to evaluation of high temperature performance from different directions. The results show that the ε@5000 and creep rate are failed in the condition of high temperature and large deviatoric stress, so it hast widely practicable. The flow number FN is also limited by the conditions, which leads to the distortion of the flow number at lower temperature and smaller deviatoric stress so it is not easy to direct used as the evaluation index. Axial permanent deformation can reflect the permanent deformation in different cycles which is an excellent index to evaluate the high temperature performance of the two kinds of asphalt mixture, it is recommended to use axial permanent deformation to compare the LM-S modified asphalt mixture and SBS modified asphalt mixture The experimental results show that the axial permanent deformation of the LM-S modified asphalt mixture is always less than that of SBS modified asphalt mixture,it indicating that the high temperature rutting resistance of the LM-S modified asphalt mixture is better than that of SBS modified asphalt mixture.


Since 1960 Using crumb rubber modifier (CRM) in hot asphalt mixtures has become a frequent practice in road construction. Using the CRM by the dry process method is not commonly used, although it has great advantages such as it is less fuel consuming and it does not require storage container like the wet process method. This research evaluates the mechanical properties of dense graded asphalt rubber mixtures manufactured using the dry process. The results obtained from this mixture compared with similar asphalt mixture without CRM. The mechanical properties of all mixtures evaluated using a set of tests such Marshall Stability and flow test, moisture susceptibility test, indirect tensile strength test, dynamic modulus and flow number test. The research results showed that using CRM with 0.75% of aggregate’s weight increased the mixture’s stability, flow and enhanced its cracking and permanent deformation resistance.


2013 ◽  
Vol 639-640 ◽  
pp. 1287-1294 ◽  
Author(s):  
Jing Song Chen ◽  
Lei Zeng ◽  
Jian Yin

Asphalt mixture compaction is an important procedure of asphalt mixture construction and can significantly affect the performance of asphalt pavement. In this paper, an open source DEM code was applied to simulate the compaction of hot-mix asphalt (HMA) with the Superpave gyratory compactor. The asphalt mixture compaction process, air voids distribution, internal coarse aggregate structure, and the effect of CA ratio were investigated from a microscopic point of view. The analysis results show that DEM simulation is an economical and effective approach to the research of asphalt mixture compaction, and has tremendous potential for asphalt mixture design.


2014 ◽  
Vol 891-892 ◽  
pp. 747-752
Author(s):  
Mofreh F. Saleh

The Mechanistic empirical pavement design method for flexible pavements is based on modelling certain modes of failures for different pavement materials. In the Australian and New Zealand guidelines, the mechanistic empirical pavement design is based on modelling fatigue and permanent deformation as the two major modes of failures. The Austroads guidelines use the Shell fatigue performance transfer function to model the fatigue behaviour of asphalt mixes. In this research, the fatigue behaviour of different mixes AC10, AC14 and AC20 with different types of binders 80/100 and 60/70 was thoroughly investigated. The Shell model significantly underestimated the measured fatigue life for all mixes. A wide range of properties of the examined mixes was considered; percent of air voids ranges from 1.2% to 11.4%, binder content (at optimum, ± 0.5 from optimum), and the flexural modulus ranges from 1600 to 4576 MPa. A new fatigue model was developed at the University of Canterbury. The Canterbury model was based on the bending beam fatigue results of 78 beams tested at constant strain mode at different strain levels range from 300 to 600 microstrains. The new model provides a much better matching to the measured data with no observed bias and it accounts for percentage of air voids in the total mix and the effective binder content instead of the total binder content that is currently included in the Shell Model.


Sign in / Sign up

Export Citation Format

Share Document