scholarly journals Evaluation of Antibacterial Drugs Using Silkworms Infected by Cutibacterium acnes

Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 619
Author(s):  
Yasuhiko Matsumoto ◽  
Yuki Tateyama ◽  
Takashi Sugita

Cutibacterium acnes is a causative agent of inflammatory skin diseases and systemic infections. Systemic infections caused by C. acnes are difficult to treat, and the development of a systemic infection model for C. acnes would be useful for elucidating the mechanisms of infection and searching for therapeutic agents. In this study, we established a silkworm infection model as a new experimental system to evaluate the interaction between C. acnes and the host, and the efficacy of antibacterial drugs. Silkworms infected with C. acnes died when reared at 37 °C. The dose of injected bacterial cells required to kill half of the silkworms (LD50) was determined under rearing conditions at 37 °C. The viable cell number of C. acnes was increased in the hemolymph and fat body of the infected silkworms. Silkworms injected with autoclaved C. acnes cells did not die during the study period. The survival time of silkworms injected with C. acnes was prolonged by the injection of antibacterial drugs such as tetracycline and clindamycin. These findings suggest that the silkworm C. acnes infection model can be used to evaluate host toxicity caused by C. acnes and the in vivo efficacy of antimicrobial drugs.

2020 ◽  
Author(s):  
Yasuhiko Matsumoto ◽  
Yuki Tateyama ◽  
Takashi Sugita

Abstract Objective: Cutibacterium acnes is a causative agent of inflammatory skin diseases and systemic infections. Systemic infections caused by C. acnes are difficult to treat, and the development of a systemic infection model for C. acnes would be useful for elucidating the mechanisms of infection and searching for therapeutic agents. In this study, we established a silkworm infection model as a new experimental system to evaluate the interaction between C. acnes and the host, and the efficacy of antibacterial drugs.Results: Silkworms infected with C. acnes died when reared at 37˚C. The dose of injected bacterial cells required to kill half of the silkworms (LD50) was determined under rearing conditions at 37˚C. Silkworms injected with autoclaved C. acnes cells did not die during the study period. The survival time of silkworms injected with C. acnes was prolonged by the injection of antibacterial drugs such as tetracycline and clindamycin. These findings suggest that the silkworm C. acnes infection model can be used to evaluate host toxicity caused by C. acnes and the in vivo efficacy of antimicrobial drugs.


Author(s):  
Lize Delanghe ◽  
Irina Spacova ◽  
Joke Van Malderen ◽  
Eline Oerlemans ◽  
Ingmar Claes ◽  
...  

The human skin microbiota forms a key barrier against skin pathogens and is important in modulating immune responses. Recent studies identify lactobacilli as endogenous inhabitants of healthy skin, while inflammatory skin conditions are often associated with a disturbed skin microbiome. Consequently, lactobacilli-based probiotics are explored as a novel treatment of inflammatory skin conditions through their topical skin application. This review focuses on the potential beneficial role of lactobacilli (family Lactobacillaceae) in the skin habitat, where they can exert multifactorial local mechanisms of action against pathogens and inflammation. On one hand, lactobacilli have been shown to directly compete with skin pathogens through adhesion inhibition, production of antimicrobial metabolites, and by influencing pathogen metabolism. The competitive anti-pathogenic action of lactobacilli has already been described mechanistically for common different skin pathogens, such as Staphylococcus aureus, Cutibacterium acnes, and Candida albicans. On the other hand, lactobacilli also have an immunomodulatory capacity associated with a reduction in excessive skin inflammation. Their influence on the immune system is mediated by bacterial metabolites and cell wall-associated or excreted microbe-associated molecular patterns (MAMPs). In addition, lactobacilli can also enhance the skin barrier function, which is often disrupted as a result of infection or in inflammatory skin diseases. Some clinical trials have already translated these mechanistic insights into beneficial clinical outcomes, showing that topically applied lactobacilli can temporarily colonize the skin and promote skin health, but more and larger clinical trials are required to generate in vivo mechanistic insights and in-depth skin microbiome analysis.


2017 ◽  
Vol 62 (3) ◽  
Author(s):  
Hassan E. Eldesouky ◽  
Abdelrahman Mayhoub ◽  
Tony R. Hazbun ◽  
Mohamed N. Seleem

ABSTRACTInvasive candidiasis presents an emerging global public health challenge due to the emergence of resistance to the frontline treatment options, such as fluconazole. Hence, the identification of other compounds capable of pairing with fluconazole and averting azole resistance would potentially prolong the clinical utility of this important group. In an effort to repurpose drugs in the field of antifungal drug discovery, we explored sulfa antibacterial drugs for the purpose of reversing azole resistance inCandida. In this study, we assembled and investigated a library of 21 sulfa antibacterial drugs for their ability to restore fluconazole sensitivity inCandida albicans. Surprisingly, the majority of assayed sulfa drugs (15 of 21) were found to exhibit synergistic relationships with fluconazole by checkerboard assay with fractional inhibitory concentration index (ΣFIC) values ranging from <0.0312 to 0.25. Remarkably, five sulfa drugs were able to reverse azole resistance in a clinically achievable range. The structure-activity relationships (SARs) of the amino benzene sulfonamide scaffold as antifungal agents were studied. We also identified the possible mechanism of the synergistic interaction of sulfa antibacterial drugs with azole antifungal drugs. Furthermore, the ability of sulfa antibacterial drugs to inhibitCandidabiofilm by 40%in vitrowas confirmed. In addition, the effects of sulfa-fluconazole combinations onCandidagrowth kinetics and efflux machinery were explored. Finally, using aCaenorhabditis elegansinfection model, we demonstrated that the sulfa-fluconazole combination does possess potent antifungal activityin vivo, reducingCandidain infected worms by ∼50% compared to the control.


Viruses ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 192 ◽  
Author(s):  
Feng Wang ◽  
Xinyu Ji ◽  
Qiupeng Li ◽  
Guanling Zhang ◽  
Jiani Peng ◽  
...  

New strategies against antibiotic-resistant bacterial pathogens are urgently needed but are not within reach. Here, we present in vitro and in vivo antimicrobial activity of TSPphg, a novel phage lysin identified from extremophilic Thermus phage TSP4 by sequencing its whole genome. By breaking down the bacterial cells, TSPphg is able to cause bacteria destruction and has shown bactericidal activity against both Gram-negative and Gram-positive pathogenic bacteria, especially antibiotic-resistant strains of Klebsiella pneumoniae, in which the complete elimination and highest reduction in bacterial counts by greater than 6 logs were observed upon 50 μg/mL TSPphg treatment at 37 °C for 1 h. A murine skin infection model further confirmed the in vivo efficacy of TSPphg in removing a highly dangerous and multidrug-resistant Staphylococcus aureus from skin damage and in accelerating wound closure. Together, our findings may offer a therapeutic alternative to help fight bacterial infections in the current age of mounting antibiotic resistance, and to shed light on bacteriophage-based strategies to develop novel anti-infectives.


2020 ◽  
Author(s):  
Lokender Kumar ◽  
Nathanael Brenner ◽  
John Brice ◽  
Judith Klein-Seetharaman ◽  
Susanta K. Sarkar

ABSTRACTPseudomonas aeruginosa utilizes a chemical social networking system referred to as quorum sensing (QS) to strategically co-ordinate the expression of virulence factors and biofilm formation. Virulence attributes damage the host cells, impair the host immune system, and protect bacterial cells from antibiotic attack. Thus, anti-QS agents may act as novel anti-infective therapeutics to treat P. aeruginosa infections. The present study was performed to evaluate the anti-QS, anti-biofilm, and anti-virulence activity of β-lactam antibiotics (carbapenems and cephalosporins) against P. aeruginosa. The anti-QS activity was quantified using Chromobacterium violaceum CV026 as a QS reporter strain. Our results showed that cephalosporins including cefepime (CP), ceftazidime (CF), and ceftriaxone (CT) exhibited potent anti-QS and anti-virulence activities against P. aeruginosa PAO1. These antibiotics significantly impaired motility phenotypes, decreased pyocyanin production, and reduced the biofilm formation by P. aeruginosa PAO1. In the present study, we studied isogenic QS mutants of PAO1: ΔLasR, ΔRhlR, ΔPqsA, and ΔPqsR and found that the levels of virulence factors of antibiotic-treated PAO1 were comparable to QS mutant strains. Molecular docking predicted high binding affinities of cephalosporins for the ligand-binding pocket of QS receptors (CviR, LasR, and PqsR). In addition, our results showed that the anti-microbial activity of aminoglycosides increased in the presence of sub-inhibitory concentrations (sub-MICs) of CP against P. aeruginosa PAO1. Further, utilizing Caenorhabditis elegans as an animal model for the in vivo anti-virulence effects of antibiotics, cephalosporins showed a significant increase in C. elegans survival by suppressing virulence factor production in P. aeruginosa. Thus, our results indicate that cephalosporins might provide a viable anti-virulence therapy in the treatment of infections caused by multi-drug resistant P. aeruginosa.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Arun K. Kannan ◽  
Zhi Su ◽  
Donna M. Gauvin ◽  
Stephanie E. Paulsboe ◽  
Ryan Duggan ◽  
...  

AbstractFoxp3+ regulatory T cells (Tregs) represent a major fraction of skin resident T cells. Although normally protective, Tregs have been shown to produce pro-inflammatory cytokines in human diseases, including psoriasis. A significant hurdle in the Treg field has been the identification, or development, of model systems to study this Treg plasticity. To overcome this gap, we analyzed skin resident Tregs in a mouse model of IL-23 mediated psoriasiform dermatitis. Our results demonstrate that IL-23 drove the accumulation of Tregs; including a subpopulation that co-expressed RORγt and produced IL-17A. Genesis of this population was attenuated by a RORγt inverse agonist compound and clinically relevant therapeutics. In vitro, IL-23 drove the generation of CD4+Foxp3+RORγt+IL-17A+ cells from Treg cells. Collectively, our data shows that IL-23 drives Treg plasticity by inducing a population of CD4+Foxp3+RORγt+IL-17A+ cells that could play a role in the disease pathogenesis. Through this work, we define an in vitro system and a pre-clinical in vivo mouse model that can be used to further study Treg homeostasis and plasticity in the context of psoriasis.


1997 ◽  
Vol 41 (10) ◽  
pp. 2278-2281 ◽  
Author(s):  
R Nagano ◽  
K Shibata ◽  
T Naito ◽  
A Fuse ◽  
K Asano ◽  
...  

The in vivo activity of BO-3482, which has a dithiocarbamate chain at the C-2 position of 1beta-methyl-carbapenem, was compared with those of vancomycin and imipenem in murine models of septicemia and thigh infection with methicillin-resistant Staphylococcus aureus (MRSA). Because BO-3482 was more susceptible than imipenem to renal dehydropeptidase I in a kinetic study of hydrolysis by this renal enzyme, the therapeutic efficacy of BO-3482 was determined during coadministration with cilastatin. In the septicemia models, which involved two homogeneous MRSA strains and one heterogeneous MRSA strain, the 50% effective doses were, respectively, 4.80, 6.06, and 0.46 mg/kg of body weight for BO-3482; 5.56, 2.15, and 1.79 mg/kg for vancomycin; and >200, >200, and 15.9 mg/kg for imipenem. BO-3482 was also as effective as vancomycin in an MRSA septicemia model with mice with cyclophosphamide-induced immunosuppression. In the thigh infection model with a homogeneous MRSA strain, the bacterial counts in tissues treated with BO-3482-cilastatin were significantly reduced in a dose-dependent manner compared with the counts in those treated with vancomycin and imipenem-cilastatin (P < 0.001). These results indicate that BO-3482-cilastatin is as effective as vancomycin in murine systemic infections and is more bactericidal than vancomycin in local-tissue infections. The potent in vivo activity of BO-3482-cilastatin against such MRSA infections can be ascribed to the good in vitro anti-MRSA activity and improved pharmacokinetics in mice when BO-3482 is combined with cilastatin and to the bactericidal nature of the carbapenem.


2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Joonhyoung Yang ◽  
Sangyeon Min ◽  
Seungug Hong

Background. Atopic Dermatitis (AD) is one of the most common chronic inflammatory skin diseases. Objective. This experiment aimed to study the effects of Fermented Flax Seed Oil (FFSO) on symptoms such as redness, eczema, and pruritus induced by AD. Materials and Methods. AD-induced NC/Nga mice were used to observe the immunological and therapeutic effects of FFSO on skin in vivo. Raw 264.7 cells were used to investigate the effects of FFSO in cells. Fc receptor expression and concentration of beta-hexosaminidase were measured. Nitric oxide assay, Western blotting, real-time PCR, image analysis, and statistical analysis were performed in vitro. Results. In the immunohistochemical results, p-ERK 1/2 expression decreased, fibrogenesis strongly increased, and distribution reduction is observed. Distribution of IL-4-positive cells in the corium near the basal portion of the epithelium in the AT group was reduced. FFSO treatment reduced the number of cells showing NF-κB p65 and iNOS expression. The level of LXR in the AT group was higher than that in the AE group, and elevation of PKC expression was significantly reduced by FFSO treatment. Conclusion. FFSO could alleviate symptoms of AD such as epithelial damage, redness, swelling, and pruritus.


Sign in / Sign up

Export Citation Format

Share Document