scholarly journals T-Regulatory Cells Confer Increased Myelination and Stem Cell Activity after Stroke-Induced White Matter Injury

2019 ◽  
Vol 8 (4) ◽  
pp. 537 ◽  
Author(s):  
Sydney Zarriello ◽  
Elliot G. Neal ◽  
Yuji Kaneko ◽  
Cesario V. Borlongan

Stroke-induced hypoxia causes oligodendrocyte death due to inflammation, lack of oxygen and exacerbation of cell death. Bone marrow-derived stem cells (BMSCs) possess an endogenous population of T-regulatory cells (Tregs) which reduce secretion of pro-inflammatory cytokines that lead to secondary cell death. Here, we hypothesize that oligodendrocyte progenitor cells (OPCs) cultured with BMSCs containing their native Treg population show greater cell viability, less pro-inflammatory cytokine secretion and greater myelin production after exposure to oxygen-glucose deprivation and reoxygenation (OGD/R) than OPCs cultured without Tregs. OPCs were cultured and then exposed to OGD/R. BMSCs with or without Tregs were added to the co-culture immediately after ischemia. The Tregs were depleted by running the BMSCs through a column containing a magnetic substrate. Fibroblast growth factor beta (FGF-β) and interleukin 6 (IL-6) ELISAs determined BMSC activity levels. Immunohistochemistry assessed OPC differentiation. OPCs cultured with BMSCs containing their endogenous Tregs showed increased myelin production compared to the BMSCs with depleted Tregs. IL-6 and FGF-β were increased in the group cultured with Tregs. Collectively, these results suggest that BMSCs containing Tregs are more therapeutically active, and that Tregs have beneficial effects on OPCs subjected to ischemia. Tregs play an important role in stem cell therapy and can potentially treat white matter injury post-stroke.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nirupama D. Verma ◽  
Andrew D. Lam ◽  
Christopher Chiu ◽  
Giang T. Tran ◽  
Bruce M. Hall ◽  
...  

AbstractResting and activated subpopulations of CD4+CD25+CD127loT regulatory cells (Treg) and CD4+CD25+CD127+ effector T cells in MS patients and in healthy individuals were compared. Peripheral blood mononuclear cells isolated using Ficoll Hypaque were stained with monoclonal antibodies and analysed by flow cytometer. CD45RA and Foxp3 expression within CD4+ cells and in CD4+CD25+CD127loT cells identified Population I; CD45RA+Foxp3+, Population II; CD45RA−Foxp3hi and Population III; CD45RA−Foxp3+ cells. Effector CD4+CD127+ T cells were subdivided into Population IV; memory /effector CD45RA− CD25−Foxp3− and Population V; effector naïve CD45RA+CD25−Foxp3−CCR7+ and terminally differentiated RA+ (TEMRA) effector memory cells. Chemokine receptor staining identified CXCR3+Th1-like Treg, CCR6+Th17-like Treg and CCR7+ resting Treg. Resting Treg (Population I) were reduced in MS patients, both in untreated and treated MS compared to healthy donors. Activated/memory Treg (Population II) were significantly increased in MS patients compared to healthy donors. Activated effector CD4+ (Population IV) were increased and the naïve/ TEMRA CD4+ (Population V) were decreased in MS compared to HD. Expression of CCR7 was mainly in Population I, whereas expression of CCR6 and CXCR3 was greatest in Populations II and intermediate in Population III. In MS, CCR6+Treg were lower in Population III. This study found MS is associated with significant shifts in CD4+T cells subpopulations. MS patients had lower resting CD4+CD25+CD45RA+CCR7+ Treg than healthy donors while activated CD4+CD25hiCD45RA−Foxp3hiTreg were increased in MS patients even before treatment. Some MS patients had reduced CCR6+Th17-like Treg, which may contribute to the activity of MS.


PLoS ONE ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. e32420 ◽  
Author(s):  
Kanishka Mohib ◽  
Bodour AlKhamees ◽  
Haggag S. Zein ◽  
David Allan ◽  
Lisheng Wang

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5206-5206
Author(s):  
Djordje Atanackovic ◽  
Yanran Cao ◽  
Christiane Faltz ◽  
Katrin Bartels ◽  
Christine Wolschke ◽  
...  

Abstract BACKGROUND: Immunosuppressive CD4+Foxp3+ T regulatory cells (Treg) play a vital role in immune regulation. Thus, Treg contribute to the prevention of autoimmune disease and graft-versus-host reactions following allogeneic stem cell transplantation (alloSCT) but also to the inhibition of effective anti-tumor T cell responses. It has previously been suggested that the frequency of Treg is increased in the peripheral blood of patients with multiple myeloma (MM). However, little is known about the presence of Treg in the bone marrow and it is unclear whether allogeneic stem cell transplantation might deplete Treg from this immune compartment. METHODS: In the present study, we analyzed percentages of CD4+Foxp3+ Treg as well as Treg expression of CD45RA and CCR7 in the bone marrow (BM) and in the peripheral blood of MM patients who had received alloSCT (N=42), in newly diagnosed MM patients (N=18), and in healthy controls (N=15) using flow cytometry. In addition, we performed inhibition assays in order to test the functional relevance of peripheral and BM-residing Treg. RESULTS: While newly diagnosed MM patients and healthy controls showed no significant difference in the proportions of CD4+Foxp3+ Treg in the bone marrow, percentages of BM-residing CD4+Foxp3+ T regulatory cells were markedly higher (p<0.001 and p<0.01) in patients post alloSCT (3.3±0.3%) than in normal BM (1.0±0.3%) or in BM of untreated MM patients (1.8±0.4%). In both groups of patients (p<0.05) as well as in the healthy controls (p<0.001) percentages of Treg were higher in the peripheral blood than in the bone marrow. While there were no differences regarding the percentages of peripheral Treg between the remaining groups, patients post alloSCT had higher percentages of peripheral Treg than newly diagnosed patients (5.6±0.8 vs. 3.2±0.7%, p<0.05). More than 90% of these donor-derived peripheral and BM-residing Treg expressed a memory T cell phenotype, being negative for CD45RA and CCR7. Importantly, peripheral as well as BM-residing Treg of patients post alloSCT were capable of inhibiting the proliferation of autologous non-Treg CD4+ T cells. CONCLUSION: Our study demonstrates for the first time an increased frequency of immunosuppressive Treg in the bone marrow of MM patients. Remarkably, in our patients these memory-type Treg were all donor-derived and led to an efficient replenishment of Treg in the periphery. These Treg might be necessary for the prevention of graft-versus-host disease in the transplanted MM patients, however, they might also contribute to the failure of an effective graft-versus-myeloma effect in the majority of the patients.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 586-586
Author(s):  
Lequn Li ◽  
Jin sub Kim ◽  
Vassiliki A Boussiotis

Abstract Abstract 586 A major challenge of the immune system is to fight pathogens and tumor antigens while preserving tolerance to self-antigen. T regulatory cells (Treg) are critical extrinsic regulators of immune tolerance and maintenance of lymphoid homeostasis. Recently it was determined that, when used as cell-based immunosuppressive therapy, Treg have a potent effect in preventing GvHD in patients undergoing allogeneic stem cell transplantation. However, several studies suggest that the Treg phenotype is not at end stage of differentiation. Treg can express and produce effector cytokines including IFN-γ and IL-17 under certain conditions, particularly in the context of inflammatory milieu, suggesting that Treg may convert into inflammatory mediators. IL-1β and TNF-α are critical inflammatory cytokines that have been implicated in GvHD. The precise role and the mechanism(s) via which these cytokines may affect development of GvHD remain unclear. In the presence study, we sought to determine whether IL-1β and TNF-α regulate the properties of Treg and specifically whether these cytokines affect Treg expansion and/or conversion into IL-17 producing cells. CD4+CD25+Treg cells were isolated from B6 mice and were stimulated with anti-CD3-plus-anti-CD28 mAbs in the presence of either media, IL-1β or TNF-α. Addition of either cytokine induced Treg proliferation as determined by CFSE. Assessment of intracellular IL-17 expression by flow cytometry and IL-17 production by ELISA revealed that IL-1β but not TNF-α induced conversion of Treg into IL-17 producing cells, suggesting that conversion was mediated via pathways distinct from those that regulate cell cycle progression. To evaluate conversion of Treg to IL-17 producers during antigen stimulation and to determine the role of IL-1β in this process, we used neutral culture conditions in which no exogenous cytokines were supplied. Treg cells isolated from Foxp3GFP-KI mouse were added to cultures of naive conventional CD4+ T cells (Tc) in the presence of APC and anti-CD3 mAb. We found that these conditions preferentially induced conversion of Treg to IL-17 producing cells. To determine the role of IL-1β in this conversion process, we used IL-1β neutralizing antibody. Addition of anti-IL-1β neutralizing antibody reduced IL-17 production to almost undetectable levels. Because it has exogenous IL-6 can induce IL-17 production by both Treg and Tc, we evaluated whether endogenous IL-6 was involved in the conversion of Treg into IL-17 producing cells in our system. Addition of a combination of IL-6 neutralizing and IL-6 receptor blocking antibodies did not affect IL-17 production, suggesting that the conversion process of Treg into IL-17 producing cells was dependent on endogenous IL-1β rather than IL-6. To determine whether IL-1β was mandatory for this process, we used T cells from IL-1R deficient mice. Individual culture of IL−1R−/− Tc or IL-1R−/− Treg with wild type (wt) APC and co-culture of IL-1R−/− Tc and IL-1R−/− Treg with wt APC did not result in detectable IL-17 production. Similarly, no IL-17 production was observed when wt instead of IL-1R−/− Tc were used. In contrast, substitution of IL-1R−/− Treg with wt Treg resulted in abundant IL-17 production. To investigate the in vivo biological relevance of our findings we adoptively transferred Treg cells from either congenic B6.PL mice or IL-1R1−/− mice into IL-1R1−/− recipients, which were then immunized with KLH in IFA. Three days after immunization both IL-1R−/− Treg and IL-1R−/− Tc cells were incapable of producing detectable levels of IL-17 or expressing RORγt, the key transcriptional factor of IL-17. In contrast, a significant percentage of IL-17 and RORγt positive cells were detected within the adoptively transferred Thy1.1+ Treg population. Mechanistic analysis revealed that IL-1β induced activation of p38 and JNK in Treg and addition of pharmacologic inhibitors specific for these MAPKs abrogated IL-17 production. Our studies reveal that although Treg have primarily immunosuppressive functions they may also facilitate pro-inflammatory responses as they can be converted into IL-17 producing cells by IL-1β. These observations may have significant implications on clinical strategies that employ Treg for control of GvHD and suggest that further intervention might be required to prevent attainment of pro-inflammatory properties by Treg while maintaining their suppressive function. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Man Zhao ◽  
Yuan Yao ◽  
Jingyi Du ◽  
Liang Kong ◽  
Tiantian Zhao ◽  
...  

Hypoxic-ischemic encephalopathy (HIE) is one main cause of neonatal death and disability, causing substantial injury to white and gray matter, which can lead to severe neurobehavioral dysfunction, including intellectual disability and dyskinesia. Inflammation, nerve cell death, and white matter injury are important factors in the pathological process of HIE. 6-Gingerol is a ginger extract, which reduces inflammatory response and cell death. However, the role of 6-Gingerol in neonatal hypoxic-ischemic brain injury (HIBI) remains unknown. In this study, we constructed a mouse HIBI model and analyzed the protective effect of 6-Gingerol on HIBI by using behavioral tests, histological staining, qPCR and western blot. Here, we found that 6-Gingerol treatment could alleviate HIBI and improve short-term reflex performance, which is closely related to cell death and neuroinflammation. Additionally, 6-Gingerol reduced neuronal apoptosis, pro-inflammatory factor release, as well as microglial activation. Furthermore, 6-Gingerol significantly improved motor disability, which is associated with white matter damage. Thus, our results showed that 6-Gingerol could reduce the loss of myelin sheaths, alleviate cell death of oligodendrocytes, and stimulate the maturation of oligodendrocytes. In terms of mechanism, we found that 6-Gingerol decreased histone H3K27me3 levels, activated AKT pathway and inhibited the activation of ERK and NF-κB pathway at 3 days post-HIBI. Taken together, our data clearly indicate that 6-Gingerol plays a neuroprotective role against HIBI by epigenetic modification and regulation of AKT, ERK, and NF-κB pathways, inhibiting inflammatory responses and reducing cell death.


2019 ◽  
Vol 40 (3) ◽  
pp. 639-655 ◽  
Author(s):  
Xuejiao Dai ◽  
Jie Chen ◽  
Fei Xu ◽  
Jingyan Zhao ◽  
Wei Cai ◽  
...  

Transforming growth factor α (TGF-α) has been reported to play important roles in neurogenesis and angiogenesis in the injured brain. The present study characterizes a novel role for TGFα in oligodendrocyte lineage cell survival and white matter integrity after ischemic stroke. Three days after transient (60 min) middle cerebral artery occlusion (tMCAO), TGFα expression was significantly increased in microglia/macrophages and neurons. Expression of the receptor of TGFα—epidermal growth factor receptor (EGFR)—was increased in glial cells after ischemia, including in oligodendrocyte lineage cells. TGFα knockout enlarged brain infarct volumes and exacerbated cell death in oligodendrocyte precursor cells (OPCs) and oligodendrocytes three days after tMCAO. TGFα-deficient mice displayed long-term exacerbation of sensorimotor deficits after tMCAO, and these functional impairments were accompanied by loss of white matter integrity and impaired oligodendrocyte replacement. In vitro studies confirmed that 5 or 10 ng/mL TGFα directly protected OPCs and oligodendrocytes against oxygen and glucose deprivation (OGD)-induced cell death, but exerted no effects on OPC differentiation. Further studies identified STAT3 as a key transcription factor mediating the effects of TGFα on OPCs and oligodendrocytes. In conclusion, TGFα provides potent oligodendrocyte protection against cerebral ischemia, thereby maintaining white matter integrity and improving neurological recovery after stroke.


Sign in / Sign up

Export Citation Format

Share Document