scholarly journals Revealing Underdrawings in Wall Paintings of Complex Stratigraphy with a Novel Reflectance Photoacoustic Imaging Prototype

2021 ◽  
Vol 7 (12) ◽  
pp. 250
Author(s):  
Antonina Chaban ◽  
George J. Tserevelakis ◽  
Evgenia Klironomou ◽  
Raffaella Fontana ◽  
Giannis Zacharakis ◽  
...  

Revealing precious hidden features by a completely non-invasive approach is one of the crucial issues in the Heritage Science field. In this regard, concealed fresco paintings still represent an analytical challenge. This paper addresses the specific issue in wall painting diagnostics by the photoacoustic (PA) imaging technique, already proven to be efficient in revealing underdrawings and internal stratigraphy in movable paintings on paper and canvas. A newly set-up reflection PA prototype was applied here for the first time to probe the charcoal, graphite and sinopia hidden sketch drawings in concealed (gypsum, limewash, overpainted) wall paintings. The results presented here push forward the frontiers of the PA imaging technique and point to its potential effectiveness of revealing hidden underdrawings in historical wall paintings with complex stratigraphy.

Author(s):  
Moein Enayati ◽  
Marjorie Skubic

Abstract Background: Current protocol for monitoring high-risk patients in psychiatric hospital calls for a staff member to enter each room every 15 minutes to visually ensure that each patient is still breathing. This protocol has been set up for fast intervention in the case of a patient’s self-inflicting harm. However, this procedure is disruptive to the patients and a burden for the care providers. Objective: Continuous and automated overnight monitoring of psychiatric patients for a complete cessation of breath, that eliminates the need for frequent in-person checks. Method: An IRB approved study conducted in a simulated lab environment, with a radar device placed in the ceiling above the bed. 14 volunteers simulated episodes of respiratory arrest. Results: The extracted radar signal not only tracks the episodes of complete breath cessation but also estimates the respiration rate with more than 92% accuracy, during normal breathing. Conclusion: Our proposed approach provides the means for care providers in psychiatric hospitals to ensure the patients can breathe without disturbing the patients’ sleep.


2020 ◽  
Author(s):  
Ainhoa Insausti-Delgado ◽  
Eduardo López-Larraz ◽  
Yukio Nishimura ◽  
Ulf Ziemann ◽  
Ander Ramos-Murguialday

AbstractBrain-controlled neuromodulation therapies have emerged as a promising tool to promote functional recovery in patients with motor disabilities. This neuromodulatory strategy is exploited by brain-machine interfaces and could be used for restoring lower limb muscle activity or alleviating gait deficits. Towards a non-invasive approach for leg neurorehabilitation, we present a set-up that combines acquisition of electroencephalographic (EEG) activity to volitionally control trans-spinal magnetic stimulation (ts-MS). We engineered, for the first time, a non-invasive brain-spine interface (BSI) to contingently connect motor cortical activation during leg motor imagery with the activation of leg muscles via ts-MS. This novel brain-controlled stimulation was validated with 10 healthy participants who underwent one session including different ts-MS conditions. After a short screening of their cortical activation during lower limb motor imagery, the participants used the closed-loop system at different stimulation intensities and scored system usability and comfort. We demonstrate the efficiency and robustness of the developed system to remove online stimulation artifacts from EEG regardless of ts-MS intensity used. All the participants reported absence of pain due to ts-MS and good usability. Our results also revealed that ts-MS controlled afferent and efferent intensity-dependent modulation of the nervous system. The here presented system represents a novel non-invasive means to neuromodulate peripheral nerve activity of lower limb using brain-controlled spinal stimulation.


2021 ◽  
Vol 11 (3) ◽  
pp. 1197
Author(s):  
Leandro Sottili ◽  
Laura Guidorzi ◽  
Anna Mazzinghi ◽  
Chiara Ruberto ◽  
Lisa Castelli ◽  
...  

At present, the use of non-destructive, non-invasive X-ray-based techniques is well established in heritage science for the analysis and conservation of works of art. X-ray fluorescence (XRF) plays a fundamental role since it provides information on the elemental composition, contributing to the identification of the materials present on the superficial layers of an artwork. Whenever XRF is combined with the capability of scanning an area to provide the elemental distribution on a surface, the technique is referred to as macro X-ray fluorescence (MA-XRF). The heritage science field, in which the technique is extensively applied, presents a large variety of case studies. Typical examples are paintings, ceramics, metallic objects and manuscripts. This work presents an uncommon application of MA-XRF analysis to furniture. Measurements have been carried out with the MA-XRF scanner of the INFN-CHNet collaboration at the Centro di Conservazione e Restauro “La Venaria Reale”, a leading conservation centre in the field. In particular, a chinoiserie lacquered cabinet of the 18th century and a desk by Pietro Piffetti (1701–1777) have been analysed with a focus on the characterisation of decorative layers and different materials (e.g., gilding in the former and ivory in the latter). The measurements have been carried out using a telemeter for non-planar surfaces, and with collimators of 0.8 mm and 0.4 mm diameter, depending on the spatial resolution needed. The combination of the small measuring head with the use of the telemeter and of a small collimator has guaranteed the ability to scan difficult-to-reach areas with high spatial resolution in a reasonable time (20 × 10 mm2 with 0.2 mm step in less than 20 min).


Author(s):  
H.W. Deckman ◽  
B.F. Flannery ◽  
J.H. Dunsmuir ◽  
K.D' Amico

We have developed a new X-ray microscope which produces complete three dimensional images of samples. The microscope operates by performing X-ray tomography with unprecedented resolution. Tomography is a non-invasive imaging technique that creates maps of the internal structure of samples from measurement of the attenuation of penetrating radiation. As conventionally practiced in medical Computed Tomography (CT), radiologists produce maps of bone and tissue structure in several planar sections that reveal features with 1mm resolution and 1% contrast. Microtomography extends the capability of CT in several ways. First, the resolution which approaches one micron, is one thousand times higher than that of the medical CT. Second, our approach acquires and analyses the data in a panoramic imaging format that directly produces three-dimensional maps in a series of contiguous stacked planes. Typical maps available today consist of three hundred planar sections each containing 512x512 pixels. Finally, and perhaps of most import scientifically, microtomography using a synchrotron X-ray source, allows us to generate maps of individual element.


2015 ◽  
Vol 11 (1) ◽  
pp. 2897-2908
Author(s):  
Mohammed S.Aljohani

Tomography is a non-invasive, non-intrusive imaging technique allowing the visualization of phase dynamics in industrial and biological processes. This article reviews progress in Electrical Capacitance Volume Tomography (ECVT). ECVT is a direct 3D visualizing technique, unlike three-dimensional imaging, which is based on stacking 2D images to obtain an interpolated 3D image. ECVT has recently matured for real time, non-invasive 3-D monitoring of processes involving materials with strong contrast in dielectric permittivity. In this article, ECVT sensor design, optimization and performance of various sensors seen in literature are summarized. Qualitative Analysis of ECVT image reconstruction techniques has also been presented.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Levente Kovács ◽  
Fruzsina Luca Kézér ◽  
Szilárd Bodó ◽  
Ferenc Ruff ◽  
Rupert Palme ◽  
...  

AbstractThe intensity and the magnitude of saliva cortisol responses were investigated during the first 48 h following birth in newborn dairy calves which underwent normal (eutocic, EUT, n = 88) and difficult (dystocic, DYS, n = 70) calvings. The effects of parity and body condition of the dam, the duration of parturition, the time spent licking the calf, the sex and birth weight of the calf were also analyzed. Neonatal salivary cortisol concentrations were influenced neither by factors related to the dam (parity, body condition) nor the calf (sex, birth weight). The duration of parturition and the time spent licking the calf also had no effect on salivary cortisol levels. Salivary cortisol concentrations increased rapidly after delivery in both groups to reach their peak levels at 45 and 60 min after delivery in EUT and DYS calves, respectively supporting that the birth process means considerable stress for calves and the immediate postnatal period also appears to be stressful for newborn calves. DYS calves exhibited higher salivary cortisol concentrations compared to EUT ones for 0 (P = 0.022), 15 (P = 0.016), 30 (P = 0.007), 45 (P = 0.003), 60 (P = 0.001) and 120 min (P = 0.001), and for 24 h (P = 0.040), respectively. Peak levels of salivary cortisol and the cortisol release into saliva calculated as AUC were higher in DYS than in EUT calves for the 48-h of the sampling period (P = 0.009 and P = 0.003, respectively). The greater magnitude of saliva cortisol levels in DYS calves compared to EUT ones suggest that difficult parturition means severe stress for bovine neonates and salivary cortisol could be an opportunity for non-invasive assessment of stress during the early neonatal period in cattle.


Author(s):  
M. Geraldine ◽  
Thomas Lenarz ◽  
Thomas S. Rau

Abstract Objectives (1) To evaluate the feasibility of a non-invasive, novel, simple insertion tool to perform automated, slow insertions of cochlear implant electrode arrays (EA) into a human cadaver cochlea; (2) to estimate the handling time required by our tool. Methods Basic science study conducted in an experimental OR. Two previously anonymized human cadaver heads, three commercially available EAs, and our novel insertion tool were used for the experiments. Our tool operates as a hydraulic actuator that delivers an EA at continuous velocities slower than manually feasible. Intervention(s): the human cadaver heads were prepared with a round-window approach for CI surgery in a standard fashion. Twelve EA insertion trials using our tool involved: non-invasive fixation of the tool to the head; directing the tool to the round window and EA mounting onto the tool; automated EA insertion at approximately 0.1 mm/s driven by hydraulic actuation. Outcome measurement(s): handling time of the tool; post-insertion cone-beam CT scans to provide intracochlear evaluation of the EA insertions. Results Our insertion tool successfully inserted an EA into the human cadaver cochlea (n = 12) while being attached to the human cadaver head in a non-invasive fashion. Median time to set up the tool was 8.8 (7.2–9.4) min. Conclusion The first insertions into the human cochlea using our novel, simple insertion tool were successful without the need for invasive fixation. The tool requires < 10 min to set up, which is clinically acceptable. Future assessment of intracochlear trauma is needed to support its safety profile for clinical translation.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 683
Author(s):  
Matilde Lombardero ◽  
Mario López-Lombardero ◽  
Diana Alonso-Peñarando ◽  
María del Mar Yllera

The cat mandible is relatively small, and its manipulation implies the use of fixing methods and different repair techniques according to its small size to keep its biomechanical functionality intact. Attempts to fix dislocations of the temporomandibular joint should be primarily performed by non-invasive techniques (repositioning the bones and immobilisation), although when this is not possible, a surgical method should be used. Regarding mandibular fractures, these are usually concurrent with other traumatic injuries that, if serious, should be treated first. A non-invasive approach should also first be considered to fix mandibular fractures. When this is impractical, internal rigid fixation methods, such as osteosynthesis plates, should be used. However, it should be taken into account that in the cat mandible, dental roots and the mandibular canal structures occupy most of the volume of the mandibular body, a fact that makes it challenging to apply a plate with fixed screw positions without invading dental roots or neurovascular structures. Therefore, we propose a new prosthesis design that will provide acceptable rigid biomechanical stabilisation, but avoid dental root and neurovascular damage, when fixing simple mandibular body fractures. Future trends will include the use of better diagnostic imaging techniques, a patient-specific prosthesis design and the use of more biocompatible materials to minimise the patient’s recovery period and suffering.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Alexander Ziegler ◽  
Christina Sagorny

Abstract Background In zoology, species descriptions conventionally rely on invasive morphological techniques, frequently leading to damage of the specimens and thus only a partial understanding of their structural complexity. More recently, non-destructive imaging techniques have successfully been used to describe smaller fauna, but this approach has so far not been applied to identify or describe larger animal species. Here, we present a combination of entirely non-invasive as well as minimally invasive methods that permit taxonomic descriptions of large zoological specimens in a more comprehensive manner. Results Using the single available representative of an allegedly novel species of deep-sea cephalopod (Mollusca: Cephalopoda), digital photography, standardized external measurements, high-field magnetic resonance imaging, micro-computed tomography, and DNA barcoding were combined to gather all morphological and molecular characters relevant for a full species description. The results show that this specimen belongs to the cirrate octopod (Octopoda: Cirrata) genus Grimpoteuthis Robson, 1932. Based on the number of suckers, position of web nodules, cirrus length, presence of a radula, and various shell characters, the specimen is designated as the holotype of a new species of dumbo octopus, G. imperator sp. nov. The digital nature of the acquired data permits a seamless online deposition of raw as well as derived morphological and molecular datasets in publicly accessible repositories. Conclusions Using high-resolution, non-invasive imaging systems intended for the analysis of larger biological objects, all external as well as internal morphological character states relevant for the identification of a new megafaunal species were obtained. Potentially harmful effects on this unique deep-sea cephalopod specimen were avoided by scanning the fixed animal without admixture of a contrast agent. Additional support for the taxonomic placement of the new dumbo octopus species was obtained through DNA barcoding, further underlining the importance of combining morphological and molecular datasets for a holistic description of zoological specimens.


Sign in / Sign up

Export Citation Format

Share Document