scholarly journals Study on the Resonant Behaviors of a Bottom-Hinged Oscillating Wave Surge Converter

2021 ◽  
Vol 10 (1) ◽  
pp. 2
Author(s):  
Yao Liu ◽  
Yong-Hwan Cho ◽  
Norimi Mizutani ◽  
Tomoaki Nakamura

This paper studied the resonant behaviors of a bottom-hinged oscillating wave surge converter (OWSC) as well as the relationship of resonance with the response and capture width ratio (CWR). The time-domain dynamic equation of an OWSC in shallow water based on the boundary element method (BEM) was solved by a Python code, considering the corrected wave surface and the nonlinearities of restoring moment, drag, and friction. The unknown factors, such as wave surface corrected factor and drag coefficient, were effectively calibrated with computational fluid dynamics (CFD) method. An intermediate initial angle in free decay is appropriate for use to determine the natural period. Under regular waves, the resonance occurs near the natural period for the uniform wave amplitude, rather than the uniform wave torque amplitude, and can disappear due to the amplification of Power Take-Off (PTO) friction. Under unit-amplitude regular waves, the period of maximum CWR is relatively close to the period of maximum velocity, but far from the resonant period. Under irregular waves, no stable resonance is observed because the maximum equivalent pitch angle appears at different peak periods of wave spectra with the variation in PTO damping. When the period of a regular wave or the peak period of an irregular wave is close to the natural period, a phase hysteresis of velocity relative to wave torque always occurs.

Author(s):  
J. C. C. Henriques ◽  
A. F. O. Falcão ◽  
R. P. F. Gomes ◽  
L. M. C. Gato

The present paper concerns an OWC spar-buoy, possibly the simplest concept for a floating oscillating-water-column (OWC) wave energy converter. It is an axisymmetric device (and so insensitive to wave direction) consisting basically of a (relatively long) submerged vertical tail tube open at both ends, fixed to a floater that moves essentially in heave. The length of the tube determines the resonance frequency of the inner water column. The oscillating motion of the internal free surface relative to the buoy, produced by the incident waves, makes the air flow through a turbine that drives an electrical generator. It is well known that the frequency response of point absorbers like the spar buoy is relatively narrow, which implies that their performance in irregular waves is relatively poor. Phase control has been proposed to improve this situation. The present paper presents a theoretical investigation of phase control by latching of an OWC spar-buoy in which the compressibility of air in the chamber plays an important role (the latching is performed by fast closing and opening an air valve in series with the turbine). In particular such compressibility may remove the constraint of latching threshold having to coincide with an instant of zero relative velocity between the two bodies (in the case under consideration, between the floater and the OWC). The modelling is performed in the time domain for a given device geometry, and includes the numerical optimization of the air turbine rotational speed, chamber volume and latching parameters. Results are obtained for regular waves.


2018 ◽  
Vol 6 (3) ◽  
pp. 105 ◽  
Author(s):  
Ankit Aggarwal ◽  
Csaba Pákozdi ◽  
Hans Bihs ◽  
Dag Myrhaug ◽  
Mayilvahanan Alagan Chella

The experimental wave paddle signal is unknown to the numerical modellers in many cases. This makes it quite challenging to numerically reproduce the time history of free surface elevation for irregular waves. In the present work, a numerical investigation is performed using a computational fluid dynamics (CFD) based model to validate and investigate a non-iterative free surface reconstruction technique for irregular waves. In the current approach, the free surface is reconstructed by spectrally composing the irregular wave train as a summation of the harmonic components coupled with the Dirichlet inlet boundary condition. The verification is performed by comparing the numerically reconstructed free surface elevation with theoretical input waves. The applicability of the present approach to generate irregular waves by reconstructing the free surface is investigated for different coastal and marine engineering problems. A numerical analysis is performed to validate the free surface reconstruction approach to generate breaking irregular waves over a submerged bar. The wave amplitudes, wave frequencies and wave phases are modelled with good accuracy in the time-domain during the higher-order energy transfers and complex processes like wave shoaling, wave breaking and wave decomposition. The present approach to generate irregular waves is also employed to model steep irregular waves in deep water. The free surface reconstruction method is able to simulate the irregular free surface profiles in deep water with low root mean square errors and high correlation coefficients. Furthermore, the irregular wave forces on a monopile are investigated in the time-domain. The amplitudes and phases of the force signal under irregular waves generated by using the current technique are modelled accurately in the time-domain. The proposed approach to numerically reproduce the free surface elevation in the time-domain provides promising and accurate results for all the benchmark cases.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 367 ◽  
Author(s):  
Stephanie Ordonez-Sanchez ◽  
Matthew Allmark ◽  
Kate Porter ◽  
Robert Ellis ◽  
Catherine Lloyd ◽  
...  

The flow developed on a tidal site can be characterized by combinations of turbulence, shear flows, and waves. Horizontal-axis tidal turbines are therefore subjected to dynamic loadings that may compromise the working life of the rotor and drive train components. To this end, a series of experiments were carried out using a 0.9 m horizontal-axis tidal turbine in a tow tank facility. The experiments included two types of regular waveforms, one of them simulating an extreme wave case, the other simulating a more moderate wave case. The second regular wave was designed to match the peak period and significant wave height of an irregular wave which was also tested. Measurements of torque, thrust, and blade-bending moments were taken during the testing campaign. Speed and torque control strategies were implemented for a range of operational points to investigate the influence that a control mode had in the performance of a tidal stream turbine. The results showed similar average power and thrust values were not affected by the control strategy, nor the influence of either the regular or irregular wave cases. However, it was observed that using torque control resulted in an increase of thrust and blade root bending moment fluctuations per wave period. The increase in fluctuations was in the order of 40% when compared to the speed control cases.


Author(s):  
Shengnan Liu ◽  
Muk Chen Ong ◽  
Charlotte Obhrai ◽  
Sopheak Seng

Two-dimensional (2D) numerical simulations have been performed to investigate both regular and irregular waves past a fixed horizontally semisubmerged circular cylinder. The 2D simulations are carried out by solving Navier–Stokes equations discretized by finite volume method. Volume of fluid (VOF) method is employed to capture the free surface in the numerical wave tank (NWT). Validation studies have been performed by comparing the numerical results of free surface waves past the cylinder with the published experimental and numerical data. The present numerical results are in good agreement with both the experimental and the other numerical results in terms of hydrodynamic forces and free surface elevation. Subsequently, the effects of the wave height and the wavelength on wave–structure interaction are investigated by conducting numerical simulations on the regular and the irregular waves past a semisubmerged cylinder at different wave heights and the wavelengths. The averaged and maximum vertical wave forces on the cylinder increase with the increasing wave height. The numerical results for the irregular waves are compared with those induced by the regular waves in terms of the maximum and averaged vertical wave forces. When the significant wave height and the spectral peak period of the irregular waves are equal to the wave height and the wave period of the regular waves, the maximum vertical wave force induced by the irregular waves is larger than that induced by the regular waves, meanwhile, the average vertical wave forces have the contrary relationship.


Author(s):  
Konstantina A. Galani ◽  
Giannis D. Dimou ◽  
Athanassios A. Dimas

The aim of the present work is the experimental study of the turbulent flow induced by waves above a physical model of a rock-armored slope of 1/3. The armor consisted of two layers of rocks with characteristic diameter D50 = 4.4cm. Measurements of the instantaneous velocity fields were conducted using an underwater planar PIV system. Four cases of incoming waves were tested, two cases of regular waves of 1st order Stokes theory with wave period of 1.134s and wave heights of 0.04m and 0.08m, respectively, and two cases of irregular waves, generated from a JONSWAP spectrum, with a peak period of 1.134s and significant wave heights of 0.04m and 0.08m, respectively. For the regular waves, the period-averaged velocity profiles show the existence of a strong undertow current heading towards deep water, while turbulence is not homogeneous with larger horizontal fluctuations. The phase-averaged horizontal velocity profiles present systematically larger values during wave trough passage than during wave crest passage. Furthermore, as the depth becomes smaller, the waveform loses its symmetry, with the wave trough becoming wider and the wave crest steeper. For the irregular waves, the mean velocity profiles show the existence of an undertow current weaker in magnitude than the one in the regular waves, while turbulence is still not homogeneous with larger horizontal fluctuations. For both wave cases, spanwise vorticity, which is generated at the rough surface of the rock-armored slope, is transported landward by the turbulent velocities.


1982 ◽  
Vol 1 (18) ◽  
pp. 128 ◽  
Author(s):  
Katsutoshi Tanimoto ◽  
Tadahiko Yagyu ◽  
Yoshimi Goda

The stability of armor units for the rubble mound foundations of composite breakwaters has been investigated under the action of irregular waves. The tests establish that irregular waves are more destructive than regular waves, when the height of regular waves is set equal to the significant wave height. The stability number, defined by Hudson, for quarry stones and concrete blocks with simple shapes is formulated on the basis of irregular wave tests. The stability number is expressed by two parameters of h'7/7]/3 and K, where h' is the crest depth of the rubble mound foundation, #1/3 is the design significant wave height, and K is a parameter for the combined effects of the relative water depth and the relative berm width of the rubble mound foundation to the wavelength. The design mass of armor units can be calculated by the stability equation with the stability number. The application of the proposed method to the results of the irregular wave tests demonstrates that the damage percent for the quarry stones is at most 3.5% at the design condition and the damage progresses rather gradually for the action of higher waves. On the other hand, the damage of the concrete blocks almost jumps beyond the design wave height. In particular, the drastic damage is often caused in the case of high rubble mound foundations. The proposed method is confirmed, however, to be applicable for the ordinary low mound foundations with a sufficient safety.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1522
Author(s):  
Jeong-Seok Kim ◽  
Kyong-Hwan Kim ◽  
Jiyong Park ◽  
Sewan Park ◽  
Seung Ho Shin

A numerical study was performed to investigate the applicability of the linear decomposition method for the hydrodynamic energy conversion of an oscillating-water-column type wave energy converter (OWC-WEC). Hydrodynamic problems of the OWC chamber were decomposed into the excitation and radiation problems with the time-domain numerical method based on the linear potential theory. A finite element method was applied to solve the potential flow in the entire fluid domain including OWC chamber structure. The validity of the linear decomposition method was examined by comparing with the direct interaction method for the turbine–chamber interaction based on the linear pressure drop characteristics. In order to estimate the hydrodynamic energy conversion performance under the irregular waves, the response spectrum method was applied with the transfer function based on the linear decomposition method. Under the various irregular wave conditions, the pneumatic power of OWC-WEC calculated by the response spectrum based on the linear decomposition method agreed well with the direct irregular wave simulation results.


Author(s):  
Yuelin Tan ◽  
Yanlin Shao ◽  
Robert Read

Abstract In this paper, a coupled numerical model in the time domain has been developed to study the interaction between interior liquid sloshing and the motion of a cylindrical closed fish cage when the cage is exposed to regular waves. The single-dominant nonlinear multimodal theory for sloshing in a cylindrical cage presented in [1] was implemented to simulate the liquid responses in the cage. A time-domain simulator based on the Cummins formulation of the equations of motion [2] is used to solve for the cage motion, while WAMIT is used to provide all required frequency-domain hydrodynamic coefficients for the external diffraction/radiation problems. Details of the coupling between cage motion and sloshing will be presented. The coupled solver is verified against the linear frequency-domain solution from WAMIT for the very small wave steepness, where linear theory is valid. The results show that the sloshing effect is a vital factor in the coupling process, which means that the liquid in the closed cage cannot be treated as a solid mass. This is particularly true close to the resonant frequencies of the liquid in the tank. Furthermore, the importance of nonlinearity due to sloshing responses is investigated by applying incident waves with different steepness. When the cage is exposed to regular waves, if certain criteria are met, nonlinear swirling waves are observed in the closed cage. The nonlinear swirling waves are due to the interactions between different sloshing modes, which can only be explained by a proper nonlinear theory, such as the multimodal theory applied in this study. The influence of the swirling waves on the cage motions will also be discussed in the paper. How this effect will impact the design of a closed fish cage and its mooring system can only be answered by studying the cage responses in irregular waves, which is the subject of ongoing research.


2020 ◽  
Vol 8 (5) ◽  
pp. 338
Author(s):  
Daniele Celli ◽  
Yuzhu Li ◽  
Muk Chen Ong ◽  
Marcello Di Risio

The effects of submerged berms in attenuating the momentary liquefaction beneath rubble mound breakwaters under regular waves were investigated in a recent study. The present work aims to investigate the momentary liquefaction probabilities around and beneath breakwaters with submerged berms under random waves. The interaction between waves and breakwaters with submerged berms has been simulated through a phase-resolving numerical model. The soil response to the seabed pressure induced by random waves has been investigated using a poro-elastic soil solver. For three different breakwater configurations, the liquefaction depths under random wave conditions have been compared with those cases under representative regular waves. In the present study, the offshore spectral wave height ( H m 0 ) and the peak period ( T p ) of irregular waves are used as representative regular wave parameters. Results reveal the importance of considering random waves for a safe estimation of the momentary liquefaction probability. Indication about the minimum number of random waves, which is required to properly catch the liquefaction occurrences, has been also addressed.


Author(s):  
Weizhi Wang ◽  
Arun Kamath ◽  
Hans Bihs

Ocean waves are random by nature and can be regarded as a superposition of a finite number of regular waves travelling in different directions with different frequencies and phases. Cylinder-shaped objects are commonly present in most coastal structures. An irregular bottom topography has a significant influence on the wave behaviours and therefore the wave forces on the coastal structures. A numerical approach that is able to calculate the wave forces on a cylinder in a multi-directional irregular wave field over an irregular bottom is desired. As Computational Fluid Dynamics (CFD) is able to represent most of the wave behaviour with few assumptions, it is considered to be an attractive option to address these issues. The open-source CFD wave model REEF3D has shown good performances in simulating wave propagation over irregular bottoms and a good prediction of wave forces on a cylinder in a uni-directional wave field, yet the ability to calculate the wave force in a multi-directional irregular sea needs to be validated. Therefore, this paper attempts to simulate the multi-directional random sea interaction with a large cylinder using REEF3D and validate the results. A novel approach of multi-directional irregular wave generation method in a CFD-based numerical wave tank is introduced. Only even-bottom tanks are considered in this study, leaving the irregular bottom simulation for future studies. Furthermore, among many factors that influence the wave forces, this paper focuses particularly on the effect of the wave steepness. The effects of wave steepness in regular waves, uni-directional irregular waves and multi-directional irregular waves are investigated. Goda’s JONSWAP frequency spectrum and the frequency-independent Mitsuyasu directional spreading function are used to generate the multi-directional irregular waves. The wave forces due to the multi-directional irregular waves in the numerical tank are compared with experimental data. The performance of the CFD simulation is analysed and discussed.


Sign in / Sign up

Export Citation Format

Share Document