scholarly journals The Marine Sponge Petrosia ficiformis Harbors Different Cyanobacteria Strains with Potential Biotechnological Application

2020 ◽  
Vol 8 (9) ◽  
pp. 638
Author(s):  
Patrizia Pagliara ◽  
Amilcare Barca ◽  
Tiziano Verri ◽  
Carmela Caroppo

Marine cyanobacteria are a source of bioactive natural compounds, with a wide range of biotechnological applications. However, information on sponge-associated cyanobacteria are relatively scarce to date. In this paper, we carried out the morphological and molecular characterization of eight cyanobacterial strains, previously isolated from the Mediterranean sponge Petrosia ficiformis, and evaluated their biological activities on epithelial- and neuron-like cultured cells of human and murine origin. The new analysis allowed maintaining the assignment of three strains (Cyanobium sp., Leptolyngbya ectocarpi, and Synechococcus sp.), while two strains previously identified as Synechococcus sp. and Leptolyngbya sp. were assigned to Pseudanabaena spp. One strain, i.e., ITAC104, and the ITAC101 strain corresponding to Halomicronema metazoicum, shared extremely high sequence identity, practically representing two clones of the same species. Finally, for only one strain, i.e., ITAC105, assignment to a specific genus was not possible. Concerning bioactivity analyses, incubation of cyanobacterial aqueous cell supernatants induced variable responses in cultured cells, depending on cell type, with some of them showing toxic activity on human epithelial-like cells and no toxic effects on human and rat neuron-like cells. Future investigations will allow to better define the bioactive properties of these cyanobacteria strains and to understand if they can be useful for (a) therapeutic purpose(s).

2020 ◽  
pp. 004051752092551
Author(s):  
Javeed A Awan ◽  
Saif Ur Rehman ◽  
Muhammad Kashif Bangash ◽  
Fiaz Hussain ◽  
Jean-Noël Jaubert

Curcumin is a naturally occurring hydrophobic polyphenol compound. It exhibits a wide range of biological activities such as antibacterial, anti-inflammatory, anti-carcinogenic, antifungal, anti-HIV, and antimicrobial activity. In this research work, antimicrobial curcumin nanofibrous membranes are produce by an electrospinning technique using the Eudragit RS 100 (C19H34ClNO6) polymer solution enriched with curcumin. The morphology and chemistry of the membrane are analyzed using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. Kirby Bauer disk diffusion tests are carried out to examine the antibacterial effectiveness of the membrane. Experimental results show that the nanofibers produced are of uniform thickness morphology and curcumin is successfully incorporated into the nanofibrous mat, while no chemical bonding was observed between curcumin and the polymer. The antimicrobial curcumin nanofibrous membranes can be effectively applied as antimicrobial barrier in a wide variety of medical applications such as wound healing, scaffolds, and tissue engineering.


Author(s):  
Nieves Baenas ◽  
Jenny Ruales ◽  
Diego A. Moreno ◽  
Daniel Alejandro Barrio ◽  
Carla M. Stinco ◽  
...  

Andean blueberries are wild berries grown and consumed in Ecuador which contain high values of bioactive compounds, mainly anthocyanins, with powerful antioxidant activity. The aim of this study was to evaluate the profile and contents of (poly)phenols and carotenoids in Andean blueberry by HPLC-DAD-MSn and determine a wide range of its biological activities. The antioxidant capacity of this fruit was evaluated in vitro by three different methods and in vivo using the zebrafish animal model, also the toxicity effect was determined by the zebrafish embryogenesis test. Besides, the antimicrobial activity and the capacity of Andean blueberry to produce hemagglutination in blood cells were evaluated. Finally, the bioaccessibility of (poly)phenols and related antioxidant capacity were determined in the different phases of an in vitro digestion. The global results indicated no toxicity of Andean blueberry, weakly bacteriostatic activity, and high contents of anthocyanins and antioxidant capacity, which were partially bioaccesible in vitro (~ 50 % at the final intestinal step), contributing to the knowledge of its health benefits for consumers and its potential use in the food and pharmaceutical industry as functional ingredient.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Artur Włodarczyk ◽  
Tiago Toscano Selão ◽  
Birgitta Norling ◽  
Peter J. Nixon

AbstractCyanobacteria, which use solar energy to convert carbon dioxide into biomass, are potential solar biorefineries for the sustainable production of chemicals and biofuels. However, yields obtained with current strains are still uncompetitive compared to existing heterotrophic production systems. Here we report the discovery and characterization of a new cyanobacterial strain, Synechococcus sp. PCC 11901, with promising features for green biotechnology. It is naturally transformable, has a short doubling time of ≈2 hours, grows at high light intensities and in a wide range of salinities and accumulates up to ≈33 g dry cell weight per litre when cultured in a shake-flask system using a modified growth medium − 1.7 to 3 times more than other strains tested under similar conditions. As a proof of principle, PCC 11901 engineered to produce free fatty acids yielded over 6 mM (1.5 g L−1), an amount comparable to that achieved by similarly engineered heterotrophic organisms.


2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Abdolazim Behfar ◽  
Narges Aqajari ◽  
Mohammad Reza Shushizadeh ◽  
Zahra Ramezani ◽  
Ebrahim Rajabzadeh Ghatrami

Background: Brown seaweeds contain polysaccharides, minerals, proteins, pigments, polyphenols, and fatty acids. Several of these compounds show a wide range of biological activities, such as anticoagulant, anti-tumor, antiviral, and anti-cancer effects. Objectives: This study was designed to evaluate the extraction, purification, and characterization of alginate from Sargassum angustifolium simultaneous with fucoidan extraction and the effect of this process on the structure and properties of alginate. Methods: The extraction of alginate from S. angustifolium was carried out using defatting with organic solvents mixture, treatment with acid-base solutions, and purification with absolute ethanol. The novel characterization of this compound was carried out by the Fourier transform infrared spectroscopy (FT-IR), FT-NMR, energy dispersive X-ray (EDX), and florescent spectrophotometry methods. Results: The fluorescent emission of alginate showed 66.54% removal of impurities, such as phenolic compounds. The FT-IR analysis showed the carboxyl and hydroxyl groups as significant signals in the alginate structure. By analyzing the anomeric protons and other aspects of 1H-NMR, M/G ratio, FG, FM, FGG, FMM, FMG (or FGM) were determined to be 0.61, 0.62, 0.38, 0.31, 0.07, and 0.31, respectively. The intrinsic viscosity and molecular weight of alginate were 0.9 dL/g and 41.53 kDa, respectively. Conclusions: The total amount of alginate from the residual S. angustifolium was 17% of dried seaweed. The structure elucidation of alginate was performed with the FT-IR, FT-NMR, and EDX methods.


2021 ◽  
Vol 7 (9) ◽  
pp. 774
Author(s):  
Dilara Salimova ◽  
Anna Dalinova ◽  
Vsevolod Dubovik ◽  
Igor Senderskiy ◽  
Elena Stepanycheva ◽  
...  

The study of fungal antibiotics in their competitive interactions with arthropods may lead to the development of novel biorational insecticides. Extracts of Alternaria tenuissima MFP253011 obtained using various methods showed a wide range of biological activities, including entomotoxic properties. Analysis of their composition and bioactivity allowed us to reveal several known mycotoxins and unidentified compounds that may be involved in the entomotoxic activity of the extracts. Among them, tenuazonic acid (TeA), which was the major component of the A. tenuissima extracts, was found the most likely to have larvicidal activity against Galleria mellonella. In the intrahaemocoel injection bioassay, TeA was toxic to G. mellonella and of Zophobas morio with an LT50 of 6 and 2 days, respectively, at the level of 50 µg/larva. Administered orally, TeA inhibited the growth of G. mellonella larvae and caused mortality of Acheta domesticus adults (LT50 7 days) at a concentration of 250 µg/g of feed. TeA showed weak contact intestinal activity against the two phytophages, Tetranychus urticae and Schizaphis graminum, causing 15% and 27% mortality at a concentration of 1 mg/mL, respectively. TeA was cytotoxic to the Sf9 cell line (IC50 25 µg/mL). Thus, model insects such as G. mellonella could be used for further toxicological characterization of TeA.


2021 ◽  
Author(s):  
Marina Kostić ◽  
◽  
Vera Divac ◽  
Sven Mangelinckx

The discovery that palladium complexes possess a wide range of biological activities (from antitumor, -viral, -malarial, -fungal to antimicrobial activities) encourages further research in this scientific field. Herein we describe the synthesis and characterization of a novel palladium (II) complex, using [Pd(dien)Cl]Cl and 2-(azidomethyl)cyclopropane-1,1-dicarboxylic acid (azmcpda) as a ligand. [Pd(dien)Cl]Cl was selected as a starting material taking into consideration its importance as a model for the investigation of the substitution reactions in coordination chemistry and a deeper understanding of the biological activities of some structurally similar compounds. The ligand compound was synthesized by the procedure described in the literature. It is noteworthy to mention that 2- (azidomethyl)cyclopropane-1,1-dicarboxylic acid presents the precursor for the synthesis of 2- (aminomethyl)cyclopropane-1,1-dicarboxylic acid, as an example of the constrained γ-amino dicarboxylic acids. The synthesis was achieved by the conversion of the ligand compound into the corresponding sodium dicarboxylate salt and subsequent treatment with [Pd(dien)Cl]Cl (pH maintained between 6-7). The IR and NMR spectra, as well as elemental analysis have confirmed that the Na[Pd(dien)(azmcpda)]. H2O species was formed and that coordination of the ligand compound to the metal ion was established through carboxylate oxygen donor atom.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Confidence Onyebuchi ◽  
Doğa Kavaz

AbstractOcimum gratissimum is a shrub that belongs to the Lamiaceae family of plants. Despite the known biological activities and ethnomedicinal applications, comparative evaluation of the effects of different extraction techniques on the chemical and bioactive properties of O. gratissimum extracts has not yet been performed. This study adopted different analytical techniques to determine the effect of extraction temperature and solvent type on the phytochemical and bioactive properties of O. gratissimum extracts. Chemical profiling showed increased concentrations of compounds for both the ethanolic and methanolic extracts compared to the water extracts. The results also revealed that the extraction temperature had an effect on the total phenolic content and radical-scavenging properties of the different extracts. The antioxidant kinetic modeling achieved the best fit when using the second-order kinetic model. Methanolic extracts had the highest levels of antibacterial activity against Escherichia coli, Bacillus cereus, Staphylococcus aureus, and Salmonella typhimurium. At high concentrations, all extracts lowered the viability of the breast cancer cell line MDA-MB-231. In conclusion, the chemical and bioactive properties of all extracts showed significant dependence on the extraction temperature and solvent type. With proper extraction methods, they boast a wide range of promising applications in the medical, pharmaceutical, and food industries.


2012 ◽  
Vol 178-181 ◽  
pp. 1004-1007
Author(s):  
Xiu Bo Liu ◽  
Yan Shu Jia ◽  
Na Li ◽  
He Gong ◽  
Yan He Zhang ◽  
...  

The function of secondary metabolites has been a subject of debate since the first isolation and characterization of these often times structurally complex chemical compounds. By definition, secondary metabolites are naturally produced compounds that are not essential for the survival of the producing organism, as opposed to primary metabolites. Bioassays have revealed a wide range of biological activities, such as cytotoxicity, ichthyotoxicity, antimicrobial and antifeedant activity, antifoulant and anti-cancer activities. However, some of these activities are manifested against organisms that do not represent logical targets, since they would never be encountered by the producing organism in their natural habitat.


Development ◽  
2001 ◽  
Vol 128 (14) ◽  
pp. 2833-2845 ◽  
Author(s):  
Thomas Marty ◽  
M. Alessandra Vigano ◽  
Carlos Ribeiro ◽  
Ute Nussbaumer ◽  
Nicole C. Grieder ◽  
...  

A central theme during development and homeostasis is the generation of cell type-specific responses to the action of a limited number of extant signaling cascades triggered by extracellular ligands. The molecular mechanisms by which information from such signals are integrated in responding cells in a cell-type specific manner remain poorly understood. We have undertaken a detailed characterization of an enhancer that is regulated by DPP signaling and by the homeotic protein Labial and its partners, Extradenticle and Homothorax. The expression driven by this enhancer (lab550) and numerous deletions and point mutants thereof was studied in wild-type and mutant Drosophila embryos as well as in cultured cells. We find that the lab550 enhancer is composed of two elements, a Homeotic Response Element (HOMRE) and a DPP Response Element (DPPRE) that synergize. None of these two elements can reproduce the expression of lab550, either with regard to expression level or with regard to spatial restriction. The isolated DPPRE of lab550 responds extremely weakly to DPP. Interestingly, we found that the inducibility of this DPPRE is weak because it is tuned down by the action of a repressor element. This repressor element and an additional 50 bp element appear to be crucial for the cooperation of the HOMRE and the DPPRE, and might tightly link the DPP response to the homeotic input. The cooperation between the different elements of the enhancer leads to the segmentally restricted activity of lab550 in the endoderm and provides a mechanism to create specific responses to DPP signaling with the help of a HOX protein complex.


Sign in / Sign up

Export Citation Format

Share Document