scholarly journals Prediction of Maneuverability in Shallow Water of Fishing Trawler by Using Empirical Formula

2021 ◽  
Vol 9 (12) ◽  
pp. 1392
Author(s):  
Su-Hyung Kim ◽  
Chun-Ki Lee ◽  
Yang-Bum Chae

The length between perpendiculars (LBP) of most fishing vessels is less than 100 m. Thus, they are not subject to the International Maritime Organization (IMO) maneuverability standards, affecting research on maneuverability. However, upon referencing the statistics of marine accidents related to vessel maneuvering, the number of marine accidents caused by fishing vessels is 3 to 5 times higher than that of merchant ships. Therefore, systematic and consistent research on the maneuverability characteristics of fishing vessels is surely required. In particular, a fishing vessel frequently enters and departs from the same port and often sails at high speed due to familiarity with the characteristics of the situation, which may cause maneuvering-related accidents. In this study, the maneuverability of a fishing vessel in shallow water was predicted using an empirical formula. The results of this study are expected to not only be of great help in conducting simulations when analyzing marine accidents involving fishing vessels, but will also provide unique parameters of fishing vessels that lead to developing autonomous vessels.

2021 ◽  
Vol 9 (8) ◽  
pp. 854
Author(s):  
Su-Hyung Kim ◽  
Chun-Ki Lee

Most fishing vessels are less than 100 m in length between the perpendiculars, for which adherence to the International Maritime Organization maneuverability standards are not mandatory. In the design stage of fishing vessels, maneuverability is estimated using empirical formulas—mainly analytical methods—rather than costly and time-consuming model tests. However, the empirical formula is developed through the process of regression analysis on the model test results from merchant ships’ hull form and applying the same to the fishing vessels’ hull form may result in an estimation error due to the differences in the vessels’ characteristics—e.g., L/B, B/d and Cb·B/L—. In a previous study, the authors of this paper derived a modified empirical formula by adding the hull form parameters of trawl fishing vessels to the existing empirical formula based on those of merchant ships. This study analyzes the validity of the modified empirical formula in depth by applying it to a newly-built training vessel that has the hull form of a trawl fishing vessel. As a result of the study, the estimation results were improved by including the parameters of the hull form of trawl fishing vessels in the empirical formula developed for merchant ships.


1991 ◽  
Vol 35 (01) ◽  
pp. 32-39
Author(s):  
Forng-chen Chiu ◽  
Masataka Fujino

Several years ago the authors developed a practical method for calculating vertical motions and wave loads of a high-speed craft which travels in regular head sea, and verified its validity by comparing the computed motions and wave loads with the results of model tests. In order to clarify further its validity, the method is applied herein to compute the vertical motions of a fishing vessel, and the computed motions are compared with the results of experiments conducted by Bales and others at the David W. Taylor Naval Ship Research and Development Center (DTNSRDC). Also, the vertical motions and shipto-wave relative motions predicted by the method are compared with the numerical results of conventional linear strip theory computations performed at DTNSRDC. As a result, it is found that the present method, which in principle is based on the conventional Ordinary Strip Method synthesis but modified to be able to evaluate nonlinear hydrodynamic impact forces as well as dynamic lift in waves, can be applied to estimate vertical motions and ship-to-wave relative motions of fishing vessels traveling in head sea with enough accuracy for practical use.


INSIST ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 199
Author(s):  
Rizky Irvana ◽  
Arif Fadillah ◽  
Shanty Manullang ◽  
Fridolini Fridolini

Fishing vessels used to catch resources from the sea has to pass some of the regulations from International Maritime Organization for sea-worthiness of the vessel especially about stability, resistance to acquire the highest velocity, and the vessel’s motion. This research discusses the effect of the vessel’s dimension and the hull shape by using the stability standard from IMO.The result shows that the ratio of the B/T which meets the stability criteria is 2.50 with the ratio of KG/H of the vessel is 0.65, with the assumption that the KG and H of the vessel are more than 0.70. Whereas if the resistance ratio B/T is big, the resistance for the vessel will be relatively smaller. In terms of the vessel motion, a vessel with a V-type hull will better than a U-type hull in seakeeping.


2021 ◽  
Vol 9 (6) ◽  
pp. 569
Author(s):  
Su-Hyung Kim ◽  
Chun-Ki Lee ◽  
Sang-Min Lee

Fishing vessels with a length (LBP) of less than 100 m are generally not required to comply with the mandatory IMO Ship Maneuverability Standards. Therefore, an analytical method using empirical formula is preferred rather than a model test, which consumes a lot of time and monetary resources in estimating the maneuverability at the design stage. However, most empirical formulas have been derived from the model test results of merchant ships, and in the process, estimation errors may occur when hull-form parameters (L/B or CbB/L) with high correlation are applied to fishing vessel hull form whose characteristics are different from those of merchant ships. Therefore, a modified empirical formula was derived from previous research by including major parameters of fishing vessel hull form in the Kijima 90 empirical formula. In this study, maneuverability of stern trawler hull form is estimated for validating a modified empirical formula. The study confirmed that including characteristic parameters of the fishing vessel hull form in the empirical formula developed for merchant ships could improve the accuracy of estimation.


2019 ◽  
Vol 31 (4) ◽  
pp. 205-236
Author(s):  
Myeong -Kyu Lee ◽  
Koji Yoshimoto

2021 ◽  
Vol 13 (11) ◽  
pp. 5858
Author(s):  
Kyumin Kim ◽  
Do-Hoon Kim ◽  
Yeonghye Kim

Recent studies demonstrate that fisheries are massive contributors to global greenhouse gas (GHG) emissions. The average Korean fishing vessel is old, fuel-inefficient, and creates a large volume of emissions. Yet, there is little research on how to address the GHG emissions in Korean fisheries. This study estimated the change in GHG emissions and emission costs at different levels of fishing operations using a steady-state bioeconomic model based on the case of the Anchovy Tow Net Fishery (ATNF) and the Large Purse Seine Fishery (LPSF). We conclude that reducing the fishing efforts of the ATNF and LPSF by 37% and 8% respectively would not only eliminate negative externalities on the anchovy and mackerel stock respectively, but also mitigate emissions and emission costs in the fishing industry. To limit emissions, we propose that the Korean government reduce fishing efforts through a vessel-buyback program and set an annual catch limit. Alternatively, the government should provide loans for modernizing old fishing vessels or a subsidy for installing emission abatement equipment to reduce the excessive emissions from Korean fisheries.


2021 ◽  
Vol 4 ◽  
pp. 30-36
Author(s):  
Jacobus Tupan ◽  
Richard Benny Luhulima

In general, fishing fleets operating in Maluku waters and managed by local entrepreneurs consist of monohull and trimaran fishing vessels with outriggers. Monohull fishing vessels have limited deck space and poor transverse stability, while trimaran-type vessels have better deck space and transverse stability than monohull vessels, but because they are still in the form of outriggers, the space is limited. This study aims to examine the development of the trimaran fishing vessel in terms of energy requirements, safety, and comfort of the crew during fishing operations. The initial stage of this research begins with data analysis and the basic size of monohull fishing vessels operating in Maluku waters, from this data the shape of the trimaran hull is designed. Calculation of resistance using CFD, then analyzed the calculation of resistance and stability, safety, and comfort of the ship using Maxsurf. The drag Trimaran is 8.86% smaller than a monohull and 3.25% smaller than a catamaran. Energy Usage (EHP) is proven by trimaran ships more than other ship modes. The average trimaran period is 10.5 seconds which meets IMO standards and is declared operationally good.


2021 ◽  
Vol 4 ◽  
pp. 44-50
Author(s):  
Fella Gaspersz ◽  
Richard B. Luhulima

The marine fisheries catching and processing industry are considered vulnerable to the effects of extreme weather at sea. Global warming effects and El Nino and La Nina have a significant impact on the upwelling process, which impacts the lifestyle and environment of marine biota, including pelagic fish, which is one of the most important contributors to the shipping industry. Extreme weather conditions, with wave heights ranging from 1 to 5 meters, dominate the waters of Maluku. In extreme sea conditions, most fishers choose not to go fishing, not because there are no fish at the fishing grounds, but to avoid mishaps at sea. This research aimed to analyze the critical point of ship roll motion and ship stability. The hull shape employed in this study was a monohull fishing vessel and a trimaran fishing vessel with the same displacement of 21,1 tons. In extreme weather conditions, the Maxsurf software was used to analyze the ship's response, especially the critical point of the ship's roll motion. The I.M.O. Standard was utilized to calculate the ship's stability. The operational speed of the ship was v = 3 knots, with fluctuations in wave angle of incidence between 00 - 1800. Wave heights of 1,0; 2,0; 3,0, and 0,4 meters represent extreme weather conditions in Maluku waters' fishing grounds. The findings revealed that the trimaran hull type had better stability where the inclination angle of trimaran vessel stability was 480 while the monohull was 410. The trimaran fishing vessel was able to withstand a wave height of 3 meters with an inclination angle of 32,560. In comparison, the monohull fishing vessel was able to survive at a wave height of 2 meters with an inclination angle of 24,690. Monohull fishing vessel had a maximum limit of roll motion at wave directions 82 and 99 with a wave height of 3 m, and it reached at the critical point at angles of 43 and 138, at the height of 4 m. Meanwhile, the trimaran fishing vessel had a critical point at a wave angle of 760 and 1000 with a wave height of 4 meters. In the area between those two angles, monohull and trimaran fishing vessels will lose the balance (stability) of the roll motion, resulting in capsize.


This study aims to determine the level of compliance of fishing vessels operations to Malaysian Fisheries Department rules and regulations as well as to identify the reasons of non-compliance among fishermen in Pangkor Island, Perak. The data was collected through the distribution of questionnaire and analysed using descriptive statistical tools. The level of compliance of fishing vessel operations was determined by a five point Likert scale, whilst qualitative statements were grouped into several topics using qualitative content analysis. The reasons for the fishermen’s non-compliance were also identified by using closed-ended and open-ended questions. The outcome of this study can be categorised into several levels of compliance. As for the reasons for non-compliance, the most frequent reason chosen by respondents was lack of trust towards the authorities.


Author(s):  
Sarah Putri Fitriani ◽  
Jonson Lumban Gaol ◽  
Dony Kushardono

The synthetic aperture radar (SAR) instrument of Sentinel-1 is a remote sensing technology being developed to enable the detection of vessel distribution. The purpose of this research is to study fishing-vessel detection using SAR Sentinel-1 data. In this study, the constant false alarm rate method (CFAR) for Sentinel-1 data is used for the detection of fishing vessels in Indramayu sea waters. The data used to detect ships includes SAR Sentinel-1A images and vessel monitoring system (VMS) data acquired on 8 March and 20 March 2018. SAR Sentinel-1 imagery data is obtained through pre-processing and object identification using Sentinel Application Platform (SNAP) software. Overlay analysis is then used to enable discrimination of immovable and movable objects and validation of ships detected from SAR Sentinel-1 imagery is performed using VMS data. From overlay analysis, 46 ships were detected on 8 March 2018 and 39 ships on 20 March 2018. Of all the ship points detected using SAR Sentinel-1, 7.06% could be detected by VMS data while 92.94% could not. The number of ships detected by SAR Sentinel-1 is greater than those detected by VMS because not all ships use VMS devices. 


Sign in / Sign up

Export Citation Format

Share Document