scholarly journals Towards a Standardized Procedure for the Production of Infective Spores to Study the Pathogenesis of Dermatophytosis

2021 ◽  
Vol 7 (12) ◽  
pp. 1029
Author(s):  
Emilie Faway ◽  
Cindy Staerck ◽  
Célya Danzelle ◽  
Sophie Vroomen ◽  
Christel Courtain ◽  
...  

Dermatophytoses are superficial infections of human and animal keratinized tissues caused by filamentous fungi named dermatophytes. Because of a high and increasing incidence, as well as the emergence of antifungal resistance, a better understanding of mechanisms involved in adhesion and invasion by dermatophytes is required for the further development of new therapeutic strategies. In the last years, several in vitro and in vivo models have emerged to study dermatophytosis pathogenesis. However, the procedures used for the growth of fungi are quite different, leading to a highly variable composition of inoculum for these models (microconidia, arthroconidia, hyphae), thus rendering difficult the global interpretation of observations. We hereby optimized growth conditions, including medium, temperature, atmosphere, and duration of culture, to improve the sporulation and viability and to favour the production of arthroconidia of several dermatophyte species, including Trichophyton rubrum and Trichophyton benhamiae. The resulting suspensions were then used as inoculum to infect reconstructed human epidermis in order to validate their ability to adhere to and to invade host tissues. By this way, this paper provides recommendations for dermatophytes culture and paves the way towards a standardized procedure for the production of infective spores usable in in vitro and in vivo experimental models.

Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 460
Author(s):  
Beatriz Medeiros-Fonseca ◽  
Antonio Cubilla ◽  
Haissa Brito ◽  
Tânia Martins ◽  
Rui Medeiros ◽  
...  

Penile cancer is an uncommon malignancy that occurs most frequently in developing countries. Two pathways for penile carcinogenesis are currently recognized: one driven by human papillomavirus (HPV) infection and another HPV-independent route, associated with chronic inflammation. Progress on the clinical management of this disease has been slow, partly due to the lack of preclinical models for translational research. However, exciting recent developments are changing this landscape, with new in vitro and in vivo models becoming available. These include mouse models for HPV+ and HPV− penile cancer and multiple cell lines representing HPV− lesions. The present review addresses these new advances, summarizing available models, comparing their characteristics and potential uses and discussing areas that require further improvement. Recent breakthroughs achieved using these models are also discussed, particularly those developments pertaining to HPV-driven cancer. Two key aspects that still require improvement are the establishment of cell lines that can represent HPV+ penile carcinomas and the development of mouse models to study metastatic disease. Overall, the growing array of in vitro and in vivo models for penile cancer provides new and useful tools for researchers in the field and is expected to accelerate pre-clinical research on this disease.


2020 ◽  
Vol 21 (13) ◽  
pp. 4627
Author(s):  
Olivia Rastoin ◽  
Gilles Pagès ◽  
Maeva Dufies

Neovascular age-related macular degeneration (vAMD), characterized by the neo-vascularization of the retro-foveolar choroid, leads to blindness within few years. This disease depends on angiogenesis mediated by the vascular endothelial growth factor A (VEGF) and to inflammation. The only available treatments consist of monthly intravitreal injections of antibodies directed against VEGF or VEGF/VEGFB/PlGF decoy receptors. Despite their relative efficacy, these drugs only delay progression to blindness and 30% of the patients are insensitive to these treatments. Hence, new therapeutic strategies are urgently needed. Experimental models of vAMD are essential to screen different innovative therapeutics. The currently used in vitro and in vivo models in ophthalmic translational research and their relevance are discussed in this review.


Author(s):  
Verônica Assalin Zorgetto-Pinheiro ◽  
Alexandre Meira de Vasconcelos ◽  
Rafael Sanaiotte Pinheiro ◽  
Danielle Bogo ◽  
Iandara Schettert Silva

Rheumatoid arthritis is an autoimmune and chronic pathological condition characterized by an inflammatory process of the joints It is a complex and multifactorial, involving genetic, epigenetic and environmental factors and the use of experimental models is required to better understand its pathology and for drug testing. The aim of this study was to perform a systematic literature review on experimental models in rheumatoid arthritis using IRAMUTEQ, a software that analysis, qualitatively and quantitatively, text fragments, as a methodological tool. After searching for articles published in the last five years on Scopus database and applying the exclusion criteria, we ended with 84 articles. The most commonly employed experimental models was the arthritis induction by inoculation of the Complete Freund's Adjuvant (CFA), followed by the use of combined methodologies and the collagen-induced arthritis (CIA). The analyses of abstracts by the IRAMUTEQ software provided a classification according to their textual elements in four classes, which were grouped into three main themes: in vivo models (class 1), clinical practice and traditional medicine (classes 2 and 3) and in vitro models (class 4) and it was also possible to build a similarity tree of the terms present in the abstracts and a word cloud with the most cited terms. Thus, the use of the IRAMUTEQ software as a methodological tool has been satisfactory, since it was possible to identify the main experimental models used, keywords, pathological processes and molecules involved in the pathogenesis of rheumatoid arthritis free of the researchers’ bias, in addition to being a tool for visual and intuitive results.


Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1677 ◽  
Author(s):  
Jose J. G. Marin ◽  
Elisa Herraez ◽  
Elisa Lozano ◽  
Rocio I. R. Macias ◽  
Oscar Briz

The lack of response to pharmacological treatment constitutes a substantial limitation in the handling of patients with primary liver cancers (PLCs). The existence of active mechanisms of chemoresistance (MOCs) in hepatocellular carcinoma, cholangiocarcinoma, and hepatoblastoma hampers the usefulness of chemotherapy. A better understanding of MOCs is needed to develop strategies able to overcome drug refractoriness in PLCs. With this aim, several experimental models are commonly used. These include in vitro cell-free assays using subcellular systems; studies with primary cell cultures; cancer cell lines or heterologous expression systems; multicellular models, such as spheroids and organoids; and a variety of in vivo models in rodents, such as subcutaneous and orthotopic tumor xenografts or chemically or genetically induced liver carcinogenesis. Novel methods to perform programmed genomic edition and more efficient techniques to isolate circulating microvesicles offer new opportunities for establishing useful experimental tools for understanding the resistance to chemotherapy in PLCs. In the present review, using three criteria for information organization: (1) level of research; (2) type of MOC; and (3) type of PLC, we have summarized the advantages and limitations of the armamentarium available in the field of pharmacological investigation of PLC chemoresistance.


2020 ◽  
Vol 88 (3) ◽  
pp. 32
Author(s):  
Eduardo Costa ◽  
Tânia Ferreira-Gonçalves ◽  
Gonçalo Chasqueira ◽  
António S. Cabrita ◽  
Isabel V. Figueiredo ◽  
...  

Breast cancer is one of the most common cancers worldwide, which makes it a very impactful malignancy in the society. Breast cancers can be classified through different systems based on the main tumor features and gene, protein, and cell receptors expression, which will determine the most advisable therapeutic course and expected outcomes. Multiple therapeutic options have already been proposed and implemented for breast cancer treatment. Nonetheless, their use and efficacy still greatly depend on the tumor classification, and treatments are commonly associated with invasiveness, pain, discomfort, severe side effects, and poor specificity. This has demanded an investment in the research of the mechanisms behind the disease progression, evolution, and associated risk factors, and on novel diagnostic and therapeutic techniques. However, advances in the understanding and assessment of breast cancer are dependent on the ability to mimic the properties and microenvironment of tumors in vivo, which can be achieved through experimentation on animal models. This review covers an overview of the main animal models used in breast cancer research, namely in vitro models, in vivo models, in silico models, and other models. For each model, the main characteristics, advantages, and challenges associated to their use are highlighted.


Biomolecules ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 160
Author(s):  
Oliwia Koszła ◽  
Katarzyna M. Targowska-Duda ◽  
Ewa Kędzierska ◽  
Agnieszka A. Kaczor

Schizophrenia (SZ) is a complex psychiatric disorder characterized by positive, negative, and cognitive symptoms, and is not satisfactorily treated by current antipsychotics. Progress in understanding the basic pathomechanism of the disease has been hampered by the lack of appropriate models. In order to develop modern drugs against SZ, efficient methods to study them in in vitro and in vivo models of this disease are required. In this review a short presentation of current hypotheses and concepts of SZ is followed by a description of current progress in the field of SZ experimental models. A critical discussion of advantages and limitations of in vitro models and pharmacological, genetic, and neurodevelopmental in vivo models for positive, negative, and cognitive symptoms of the disease is provided. In particular, this review concerns the important issue of how cellular and animal systems can help to meet the challenges of modeling the disease, which fully manifests only in humans, as experimental studies of SZ in humans are limited. Next, it is emphasized that novel clinical candidates should be evaluated in animal models for treatment-resistant SZ. In conclusion, the plurality of available in vitro and in vivo models is a consequence of the complex nature of SZ, and there are extensive possibilities for their integration. Future development of more efficient antipsychotics reflecting the pleiotropy of symptoms in SZ requires the incorporation of various models into one uniting model of the multifactorial disorder and use of this model for the evaluation of new drugs.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 2008
Author(s):  
Claudia Rita Corso ◽  
Natalia Mulinari Turin de Oliveira ◽  
Leonardo Moura Cordeiro ◽  
Karien Sauruk da Silva ◽  
Suzany Hellen da Silva Soczek ◽  
...  

Purpose: To review the effects of polysaccharides and their proposed mechanisms of action in breast cancer experimental models. Data sources, selection, and extraction: Articles were selected by using PubMed, ScienceDirect, Scopus, and Medline, assessed from 1 May 2019 to 1 July 2020. The systematic review was registered in the International Prospective Register of Systematic Reviews (Prospero) under the number CRD42020169103. Results: Most of the studies explore algae polysaccharides (43.2%), followed by mushrooms (13.5%), plants (13.5%), fruits (10.8%), fungus (2.7%), bacteria, (2.7%), and sea animals (2.7%). A total of 8.1% investigated only in vitro models, 62.1% evaluated only in vivo models, and 29.7% evaluated in vitro and in vivo models. The mechanism of action involves apoptosis, inhibition of cellular proliferation, angiogenesis, and antimetastatic effects through multiple pathways. Conclusions: Findings included here support further investigations on the anti-tumor effect of polysaccharides. Some polysaccharides, such as fucoidan and β-glucans, deserve detailed and structured studies aiming at translational research on breast tumors, since they are already used in the clinical practice of other proposals of human health.


2019 ◽  
Vol 43 (5) ◽  
pp. 457-489 ◽  
Author(s):  
Lucie Etienne-Mesmin ◽  
Benoit Chassaing ◽  
Mickaël Desvaux ◽  
Kim De Paepe ◽  
Raphaële Gresse ◽  
...  

ABSTRACTA close symbiotic relationship exists between the intestinal microbiota and its host. A critical component of gut homeostasis is the presence of a mucus layer covering the gastrointestinal tract. Mucus is a viscoelastic gel at the interface between the luminal content and the host tissue that provides a habitat to the gut microbiota and protects the intestinal epithelium. The review starts by setting up the biological context underpinning the need for experimental models to study gut bacteria-mucus interactions in the digestive environment. We provide an overview of the structure and function of intestinal mucus and mucins, their interactions with intestinal bacteria (including commensal, probiotics and pathogenic microorganisms) and their role in modulating health and disease states. We then describe the characteristics and potentials of experimental models currently available to study the mechanisms underpinning the interaction of mucus with gut microbes, including in vitro, ex vivo and in vivo models. We then discuss the limitations and challenges facing this field of research.


2009 ◽  
Vol 87 (1) ◽  
pp. 117-125 ◽  
Author(s):  
Sitar Shah ◽  
Heather Smith ◽  
Xiaolan Feng ◽  
Derrick E. Rancourt ◽  
Karl Riabowol

Genetic studies in model organisms have shown that programmed cell death (apoptosis) plays a significant role during development, where a deficiency in apoptosis results in severe and diverse diseases. Dysregulation of apoptosis also contributes to a variety of human diseases, such as cancer and autoimmune diseases. ING family proteins (ING1–ING5) are involved in many cellular processes, and appear to play a significant role in apoptosis. Loss or downregulation of ING protein function is frequently observed in different tumour types, many of which are resistant to apoptosis, thus warranting their classification as type II tumour suppressors. Several different in vitro and in vivo models have explored the role of ING proteins in regulating apoptosis. In this review, we discuss the progress that has been made in understanding ING protein function in apoptosis using in vitro studies and Mus musculus, Xenopus laevis, and Caenorhabditis elegans experimental models, with an emphasis on ING1 and ING3.


Author(s):  
Diana Boraschi ◽  
Dongjie Li ◽  
Yang Li ◽  
Paola Italiani

The immunological safety of drugs, nanomaterials and contaminants is a central point in the regulatory evaluation and safety monitoring of working and public places and of the environment. In fact, anomalies in immune responses may cause diseases and hamper the physical and functional integrity of living organisms, from plants to human beings. In the case of nanomaterials, many experimental models are used for assessing their immunosafety, some of which have been adopted by regulatory bodies. All of them, however, suffer from shortcomings and approximations, and may be inaccurate in representing real-life responses, thereby leading to incomplete, incorrect or even misleading predictions. Here, we review the advantages and disadvantages of current nanoimmunosafety models, comparing in vivo vs. in vitro models and examining the use of animal vs. human cells, primary vs. transformed cells, complex multicellular and 3D models, organoids and organs-on-chip, in view of implementing a reliable and personalized nanoimmunosafety testing. The general conclusion is that the choice of testing models is key for obtaining reliable predictive information, and therefore special attention should be devoted to selecting the most relevant and realistic suite of models in order to generate relevant information that can allow for safer-by-design nanotechnological developments.


Sign in / Sign up

Export Citation Format

Share Document