scholarly journals Mapping Impacts of Human Activities from Nighttime Light on Vegetation Cover Changes in Southeast Asia

Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 185
Author(s):  
Nan Xia ◽  
Manchun Li ◽  
Liang Cheng

It is commonly believed that the impacts of human activities have decreased the natural vegetation cover, while some promotion of the vegetation growth has also been found. In this study, negative or positive correlations between human impacts and vegetation cover were tested in the Southeast Asia (SEA) region during 2012–2018. The Visible Infrared Imaging Radiometer Suite—Day/Night Band (VIIRS/DNB) nocturnal data were used as a measure of human activities and the moderate resolution imaging spectroradiometer (MODIS)/normalized difference vegetation index (NDVI) diurnal data were used as a measure of vegetation cover. The temporal segmentation method was introduced to calculate features of two sets of time series with spatial resolution of about 500 m, including the overall trend, maximum trend, start date, and change duration. The regions with large variation in human activities (V-change region) were first extracted by the Gaussian fitted method, and 8.64% of the entire SEA (VIIRS overall trend <−0.2 or >0.4) was set as the target analysis area. According to statistics, the average overall VIIRS trend for the V-change region in SEA was about 2.12, with a slight NDVI increment. The time lag effect was also found between vegetation cover and human impacts change, with an average of 10.26 months. Our results indicated a slight green overall trend in the SEA region over the most recent 7 years. The spatial pattern of our trend analysis results can be useful for vegetation management and regional planning.

2021 ◽  
Vol 13 (22) ◽  
pp. 4725
Author(s):  
Binghua Zhang ◽  
Yili Zhang ◽  
Zhaofeng Wang ◽  
Mingjun Ding ◽  
Linshan Liu ◽  
...  

The Mt. Qomolangma (Everest) National Nature Preserve (QNNP) is among the highest natural reserves in the world. Monitoring the spatiotemporal changes in the vegetation in this complex vertical ecosystem can provide references for decision makers to formulate and adapt strategies. Vegetation growth in the reserve and the factors driving it remains unclear, especially in the last decade. This study uses the normalized difference vegetation index (NDVI) in a linear regression model and the Breaks for Additive Seasonal and Trend (BFAST) algorithm to detect the spatiotemporal patterns of the variations in vegetation in the reserve since 2000. To identify the factors driving the variations in the NDVI, the partial correlation coefficient and multiple linear regression were used to quantify the impact of climatic factors, and the effects of time lag and time accumulation were also considered. We then calculated the NDVI variations in different zones of the reserve to examine the impact of conservation on the vegetation. The results show that in the past 19 years, the NDVI in the QNNP has exhibited a greening trend (slope = 0.0008/yr, p < 0.05), where the points reflecting the transition from browning to greening (17.61%) had a much higher ratio than those reflecting the transition from greening to browning (1.72%). Shift points were detected in 2010, following which the NDVI tendencies of all the vegetation types and the entire preserve increased. Considering the effects of time lag and time accumulation, climatic factors can explain 44.04% of the variation in vegetation. No climatic variable recorded a change around 2010. Considering the human impact, we found that vegetation in the core zone and the buffer zone had generally grown better than the vegetation in the test zone in terms of the tendency of growth, the rate of change, and the proportions of different types of variations and shifts. A policy-induced reduction in livestock after 2010 might explain the changes in vegetation in the QNNP.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Tingting Ning ◽  
Wenzhao Liu ◽  
Wen Lin ◽  
Xiaoqiang Song

This study analyzed temporal and spatial changes of normalized difference vegetation index (NDVI) on the northern Loess Plateau and their correlation with climatic factors from 1998 to 2012. The possible impacts of human activities on the NDVI changes were also explored. The results showed that (1) the annual maximum NDVI showed an upward trend. The significantly increased NDVI and decreasing severe desertification areas demonstrate that the vegetation condition improved in this area. (2) Over the past decades, climate tended to be warmer and drier. However, the mean temperature significantly decreased and precipitation slightly increased from 1998 to 2012, especially in spring and summer, which was one of the major reasons for the increase in the annual maximum NDVI. Compared to temperature, vegetation was more sensitive to precipitation changes in this area. The NDVI and annual precipitation changes were highly synchronous over the first half of the year, while a 1-month time lag existed between the two variables during the second half of the year. (3) Positive human activities, including the “Grain for Green” program and successful environmental treatments at coal mining bases, were some of the other factors that improved the vegetation condition.


2019 ◽  
Vol 11 (4) ◽  
pp. 426 ◽  
Author(s):  
Guan Wang ◽  
Ping Wang ◽  
Tian-Ye Wang ◽  
Yi-Chi Zhang ◽  
Jing-Jie Yu ◽  
...  

The Selenga-Baikal Basin, a transboundary river basin between Mongolia and Russia, warmed at nearly twice the global rate and experienced enhanced human activities in recent decades. To understand the vegetation response to climate change, the dynamic spatial-temporal characteristics of the vegetation and the relationships between the vegetation dynamics and climate variability in the Selenga-Baikal Basin were investigated using the Normalized Difference Vegetation Index (NDVI) and gridded temperature and precipitation data for the period of 1982 to 2015. Our results indicated that precipitation played a key role in vegetation growth across regions that presented multiyear mean annual precipitation lower than 350 mm, although its importance became less apparent over regions with precipitation exceeding 350 mm. Because of the overall temperature-limited conditions, temperature had a more substantial impact on vegetation growth than precipitation. Generally, an increasing trend was observed in the growth of forest vegetation, which is heavily dependent on temperature, whereas a decreasing trend was detected for grassland, for which the predominant growth-limiting factor is precipitation. Additionally, human activities, such as urbanization, mining, increased wildfires, illegal logging, and livestock overgrazing are important factors driving vegetation change.


2020 ◽  
Vol 13 (1) ◽  
pp. 19
Author(s):  
Lauren E. H. Mathews ◽  
Alicia M. Kinoshita

A combination of satellite image indices and in-field observations was used to investigate the impact of fuel conditions, fire behavior, and vegetation regrowth patterns, altered by invasive riparian vegetation. Satellite image metrics, differenced normalized burn severity (dNBR) and differenced normalized difference vegetation index (dNDVI), were approximated for non-native, riparian, or upland vegetation for traditional timeframes (0-, 1-, and 3-years) after eleven urban fires across a spectrum of invasive vegetation cover. Larger burn severity and loss of green canopy (NDVI) was detected for riparian areas compared to the uplands. The presence of invasive vegetation affected the distribution of burn severity and canopy loss detected within each fire. Fires with native vegetation cover had a higher severity and resulted in larger immediate loss of canopy than fires with substantial amounts of non-native vegetation. The lower burn severity observed 1–3 years after the fires with non-native vegetation suggests a rapid regrowth of non-native grasses, resulting in a smaller measured canopy loss relative to native vegetation immediately after fire. This observed fire pattern favors the life cycle and perpetuation of many opportunistic grasses within urban riparian areas. This research builds upon our current knowledge of wildfire recovery processes and highlights the unique challenges of remotely assessing vegetation biophysical status within urban Mediterranean riverine systems.


2020 ◽  
Vol 12 (2) ◽  
pp. 220 ◽  
Author(s):  
Han Xiao ◽  
Fenzhen Su ◽  
Dongjie Fu ◽  
Qi Wang ◽  
Chong Huang

Long time-series monitoring of mangroves to marine erosion in the Bay of Bangkok, using Landsat data from 1987 to 2017, shows responses including landward retreat and seaward extension. Quantitative assessment of these responses with respect to spatial distribution and vegetation growth shows differing relationships depending on mangrove growth stage. Using transects perpendicular to the shoreline, we calculated the cross-shore mangrove extent (width) to represent spatial distribution, and the normalized difference vegetation index (NDVI) was used to represent vegetation growth. Correlations were then compared between mangrove seaside changes and the two parameters—mangrove width and NDVI—at yearly and 10-year scales. Both spatial distribution and vegetation growth display positive impacts on mangrove ecosystem stability: At early growth stages, mangrove stability is positively related to spatial distribution, whereas at mature growth the impact of vegetation growth is greater. Thus, we conclude that at early growth stages, planting width and area are more critical for stability, whereas for mature mangroves, management activities should focus on sustaining vegetation health and density. This study provides new rapid insights into monitoring and managing mangroves, based on analyses of parameters from historical satellite-derived information, which succinctly capture the net effect of complex environmental and human disturbances.


2021 ◽  
Vol 30 (1) ◽  
pp. 148-158
Author(s):  
Haneen Adeeb ◽  
Yaseen Al-Timimi

Soil salinity is one of the most important problems of land degradation, that threatening the environmental, economic and social system. The aim of this study to detect the changes in soil salinity and vegetation cover for Diyala Governorate over the period from 2005 to 2020, through the use of remote sensing techniques and geographic information system. The normalized difference vegetation index (NDVI) and salinity index (SI) were used, which were applied to four of the Landsat ETM+ and Landsat OLI satellite imagery. The results showed an increase in soil salinity from 7.27% in the period 2005–2010 to 27.03% in 2015–2020, as well as an increase in vegetation from 10% to 24% in the same period. Also the strong inverse correlation between the NDVI and the SI showed that vegetation is significantly affected and directly influenced by soil salinity changes


2018 ◽  
Vol 7 (4) ◽  
pp. 297-306 ◽  
Author(s):  
Amal Y. Aldhebiani ◽  
Mohamed Elhag ◽  
Ahmad K. Hegazy ◽  
Hanaa K. Galal ◽  
Norah S. Mufareh

Abstract. Wadi Yalamlam is known as one of the significant wadis in the west of Saudi Arabia. It is a very important water source for the western region of the country. Thus, it supplies the holy places in Mecca and the surrounding areas with drinking water. The floristic composition of Wadi Yalamlam has not been comprehensively studied. For that reason, this work aimed to assess the wadi vegetation cover, life-form presence, chorotype, diversity, and community structure using temporal remote sensing data. Temporal datasets spanning 4 years were acquired from the Landsat 8 sensor in 2013 as an early acquisition and in 2017 as a late acquisition to estimate normalized difference vegetation index (NDVI) changes. The wadi was divided into seven stands. Stands 7, 1, and 3 were the richest with the highest Shannon index values of 2.98, 2.69, and 2.64, respectively. On the other hand, stand 6 has the least plant biodiversity with a Shannon index of 1.8. The study also revealed the presence of 48 different plant species belonging to 24 families. Fabaceae (17 %) and Poaceae (13 %) were the main families that form most of the vegetation in the study area, while many families were represented by only 2 % of the vegetation of the wadi. NDVI analysis showed that the wadi suffers from various types of degradation of the vegetation cover along with the wadi main stream.


Author(s):  
C. Li ◽  
Y. Zhong ◽  
W. Zhang

Hong Lake is the largest lake in Hubei Province. With the increase of Hong Lake economic activity, the area, spatial location and shape of Hong Lake have changed greatly in the past. In this paper, we used the images, which is from the visible infrared imaging radiometer (VIIRS). First, we selected the images of Hong Lake waters on December 6, 2016 and December 26, 2015. Then we extracted the water bodies by the single-band method, spectral relationship method, normalized difference water index (<i>NDWI</i>) were used, and the effect-s were compared. Second, the images of Hong Lake waters in summer and winter were selected from 2012 to 2016, respectively. Last, The <i>NDWI</i> was used to extract the water body and compared with the MODIS image extraction effect in the same period. As a result of the vegetation around Hong Lake, the water is extracted by <i>NDWI</i> and normalized difference vegetation index (<i>NDVI</i>). It is found that for the VIIRS image, the <i>NDWI</i> is the best in the water extraction of Hong Lake. The <i>NDVI</i> + <i>NDWI</i> method is beneficial to the extraction of water covered with aquatic plants. VIIRS image extraction is better than MODIS image. In addition, from the study of VIIRS and MODIS to Hong Lake waters in the five years of water extraction and area calculation, 2012&amp;ndash;2016 period, Hong Lake’s average area of 348.213&amp;thinsp;km<sup>2</sup> in flood season, in dry season average area of 349.163&amp;thinsp;km<sup>2</sup>. The largest area for the 2012 flood season 389.751&amp;thinsp;km<sup>2</sup>, the smallest area of 2016 flood season 306.177&amp;thinsp;km<sup>2</sup>. Overall, Hong Lake’s area changes little.


2020 ◽  
Vol 13 (11) ◽  
pp. 5955-5975
Author(s):  
Hai Zhang ◽  
Shobha Kondragunta ◽  
Istvan Laszlo ◽  
Mi Zhou

Abstract. The Advanced Baseline Imager (ABI) on board the Geostationary Operational Environmental Satellite-R (GOES-R) series enables retrieval of aerosol optical depth (AOD) from geostationary satellites using a multiband algorithm similar to those of polar-orbiting satellites' sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS). However, this work demonstrates that the current version of GOES-16 (GOES-East) ABI AOD has diurnally varying biases due to limitations in the land surface reflectance relationships between the 0.47 µm band and the 2.2 µm band and between the 0.64 µm band and 2.2 µm band used in the ABI AOD retrieval algorithm, which vary with the Sun–satellite geometry and NDVI (normalized difference vegetation index). To reduce these biases, an empirical bias correction algorithm has been developed based on the lowest observed ABI AOD of an adjacent 30 d period and the background AOD at each time step and at each pixel. The bias correction algorithm improves the performance of ABI AOD compared to AErosol RObotic NETwork (AERONET) AOD, especially for the high and medium (top 2) quality ABI AOD. AOD data for the period 6 August to 31 December 2018 are used to evaluate the bias correction algorithm. After bias correction, the correlation between the top 2 quality ABI AOD and AERONET AOD improves from 0.87 to 0.91, the mean bias improves from 0.04 to 0.00, and root-mean-square error (RMSE) improves from 0.09 to 0.05. These results for the bias-corrected top 2 qualities ABI AOD are comparable to those of the corrected high-quality ABI AOD. By using the top 2 qualities of ABI AOD in conjunction with the bias correction algorithm, the areal coverage of ABI AOD is increased by about 100 % without loss of data accuracy.


Sign in / Sign up

Export Citation Format

Share Document