scholarly journals The Emerging Role of BDNF/TrkB Signaling in Cardiovascular Diseases

Life ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 70
Author(s):  
Peng-Zhou Hang ◽  
Hua Zhu ◽  
Pei-Feng Li ◽  
Jie Liu ◽  
Feng-Qin Ge ◽  
...  

Brain-derived neurotrophic factor (BDNF) is one of the most abundant neurotrophins in the central nervous system. Numerous studies suggest that BDNF has extensive roles by binding to its specific receptor, tropomyosin-related kinase receptor B (TrkB), and thereby triggering downstream signaling pathways. Recently, growing evidence highlights that the BDNF/TrkB pathway is expressed in the cardiovascular system and closely associated with the development and outcome of cardiovascular diseases (CVD), including coronary artery disease, heart failure, cardiomyopathy, hypertension, and metabolic diseases. Furthermore, circulating BDNF has also been revealed as a new potential biomarker for both diagnosis and prognosis of CVD. In this review, we discuss the current evidence of the emerging role of BDNF/TrkB signaling and address the challenges that remain in translating these discoveries to novel therapeutic strategies for CVD.

2020 ◽  
Vol 48 (5) ◽  
pp. 2295-2305
Author(s):  
Jiawei Zhang ◽  
Dandan Li ◽  
Rui Zhang ◽  
Peng Gao ◽  
Rongxue Peng ◽  
...  

The role of miR-21 in the pathogenesis of various liver diseases, together with the possibility of detecting microRNA in the circulation, makes miR-21 a potential biomarker for noninvasive detection. In this review, we summarize the potential utility of extracellular miR-21 in the clinical management of hepatic disease patients and compared it with the current clinical practice. MiR-21 shows screening and prognostic value for liver cancer. In liver cirrhosis, miR-21 may serve as a biomarker for the differentiating diagnosis and prognosis. MiR-21 is also a potential biomarker for the severity of hepatitis. We elucidate the disease condition under which miR-21 testing can reach the expected performance. Though miR-21 is a key regulator of liver diseases, microRNAs coordinate with each other in the complex regulatory network. As a result, the performance of miR-21 is better when combined with other microRNAs or classical biomarkers under certain clinical circumstances.


2019 ◽  
Vol 20 (7) ◽  
pp. 750-758 ◽  
Author(s):  
Yi Wu ◽  
Hengxun He ◽  
Zhibin Cheng ◽  
Yueyu Bai ◽  
Xi Ma

Obesity is one of the main challenges of public health in the 21st century. Obesity can induce a series of chronic metabolic diseases, such as diabetes, dyslipidemia, hypertension and nonalcoholic fatty liver, which seriously affect human health. Gut-brain axis, the two-direction pathway formed between enteric nervous system and central nervous system, plays a vital role in the occurrence and development of obesity. Gastrointestinal signals are projected through the gut-brain axis to nervous system, and respond to various gastrointestinal stimulation. The central nervous system regulates visceral activity through the gut-brain axis. Brain-gut peptides have important regulatory roles in the gut-brain axis. The brain-gut peptides of the gastrointestinal system and the nervous system regulate the gastrointestinal movement, feeling, secretion, absorption and other complex functions through endocrine, neurosecretion and paracrine to secrete peptides. Both neuropeptide Y and peptide YY belong to the pancreatic polypeptide family and are important brain-gut peptides. Neuropeptide Y and peptide YY have functions that are closely related to appetite regulation and obesity formation. This review describes the role of the gutbrain axis in regulating appetite and maintaining energy balance, and the functions of brain-gut peptides neuropeptide Y and peptide YY in obesity. The relationship between NPY and PYY and the interaction between the NPY-PYY signaling with the gut microbiota are also described in this review.


Nutrients ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 249
Author(s):  
Ana Checa-Ros ◽  
Antonio Jeréz-Calero ◽  
Antonio Molina-Carballo ◽  
Cristina Campoy ◽  
Antonio Muñoz-Hoyos

Studies suggest that the bidirectional relationship existent between the gut microbiome (GM) and the central nervous system (CNS), or so-called the microbiome–gut–brain axis (MGBA), is involved in diverse neuropsychiatric diseases in children and adults. In pediatric age, most studies have focused on patients with autism. However, evidence of the role played by the MGBA in attention deficit/hyperactivity disorder (ADHD), the most common neurodevelopmental disorder in childhood, is still scanty and heterogeneous. This review aims to provide the current evidence on the functioning of the MGBA in pediatric patients with ADHD and the specific role of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in this interaction, as well as the potential of the GM as a therapeutic target for ADHD. We will explore: (1) the diverse communication pathways between the GM and the CNS; (2) changes in the GM composition in children and adolescents with ADHD and association with ADHD pathophysiology; (3) influence of the GM on the ω-3 PUFA imbalance characteristically found in ADHD; (4) interaction between the GM and circadian rhythm regulation, as sleep disorders are frequently comorbid with ADHD; (5) finally, we will evaluate the most recent studies on the use of probiotics in pediatric patients with ADHD.


2021 ◽  
Vol 8 (2) ◽  
pp. 22
Author(s):  
Rashid Mir ◽  
Imadeldin Elfaki ◽  
Naina Khullar ◽  
Ajaz Ahmad Waza ◽  
Chandan Jha ◽  
...  

Cardiovascular diseases are the leading cause of death worldwide in different cohorts. It is well known that miRNAs have a crucial role in regulating the development of cardiovascular physiology, thus impacting the pathophysiology of heart diseases. MiRNAs also have been reported to be associated with cardiac reactions, leading to myocardial infarction (MCI) and ultimately heart failure (HF). To prevent these heart diseases, proper and timely diagnosis of cardiac dysfunction is pivotal. Though there are many symptoms associated with an irregular heart condition and though there are some biomarkers available that may indicate heart disease, authentic, specific and sensitive markers are the need of the hour. In recent times, miRNAs have proven to be promising candidates in this regard. They are potent biomarkers as they can be easily detected in body fluids (blood, urine, etc.) due to their remarkable stability and presence in apoptotic bodies and exosomes. Existing studies suggest the role of miRNAs as valuable biomarkers. A single biomarker may be insufficient to diagnose coronary artery disease (CAD) or acute myocardial infarction (AMI); thus, a combination of different miRNAs may prove fruitful. Therefore, this review aims to highlight the role of circulating miRNA as diagnostic and prognostic biomarkers in cardiovascular diseases such as coronary artery disease (CAD), myocardial infarction (MI) and atherosclerosis.


2017 ◽  
Vol 263 ◽  
pp. e277
Author(s):  
Tester Farmroze Ashavaid ◽  
Lakshmi Lavanya Reddy ◽  
Swarup A.V. Shah ◽  
Chandrashekhar Ponde ◽  
Rajesh M. Rajani

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Elisa Ridolfi ◽  
Cinzia Barone ◽  
Elio Scarpini ◽  
Daniela Galimberti

In the last few years, genetic and biomolecular mechanisms at the basis of Alzheimer’s disease (AD) and frontotemporal lobar degeneration (FTLD) have been unraveled. A key role is played by microglia, which represent the immune effector cells in the central nervous system (CNS). They are extremely sensitive to the environmental changes in the brain and are activated in response to several pathologic events within the CNS, including altered neuronal function, infection, injury, and inflammation. While short-term microglial activity has generally a neuroprotective role, chronic activation has been implicated in the pathogenesis of neurodegenerative disorders, including AD and FTLD. In this framework, the purpose of this review is to give an overview of clinical features, genetics, and novel discoveries on biomolecular pathogenic mechanisms at the basis of these two neurodegenerative diseases and to outline current evidence regarding the role played by activated microglia in their pathogenesis.


2019 ◽  
Vol 13 (3) ◽  
pp. 137-151 ◽  
Author(s):  
Rudy Celeghin ◽  
Gaetano Thiene ◽  
Barbara Bauce ◽  
Cristina Basso ◽  
Kalliopi Pilichou

Cardiovascular diseases (CVDs) are a wide group of disorders affecting the heart and blood vessels, including coronary artery, valve, pericardial, conduction system, myocardial and vascular diseases, either congenital or acquired, which can be also heritable. The advent of next generation sequencing (NGS) was accompanied by quick advances in understanding the genetic basis of human diseases, prompting translation of genetics to the clinic. Precision medicine is based on these findings and on the role of genetic testing to improve the diagnosis, to identify individuals with previously unrecognized disease and family members at risk of future disease development which require longitudinal follow-up. However, the probabilistic nature of genetic testing and the subjectivity of genetic variants classification weighted on current evidence, making this powerful clinical tool difficult to be applied in precision diagnostics and therapeutics. Here, we reviewed systematically the genetic basis of CVDs with special emphasis on the current role of NGS in clinical diagnosis and risk assessment, underlying the need of multidisciplinary cardio-genetic referral centers.


2020 ◽  
Vol 39 (11) ◽  
pp. 1429-1442
Author(s):  
Z-F Jiang ◽  
L Zhang ◽  
J Shen

MicroRNAs (miRNAs) are small noncoding RNAs stretching over 18–22 nucleotides and considered to be modifiers of many respiratory diseases. They are highly evolutionary conserved and have been implicated in several biological processes, including cell proliferation, apoptosis, differentiation, among others. Acute lung injury (ALI) is a fatal disease commonly caused by direct or indirect injury factors and has a high mortality rate in intensive care unit. Changes in expression of several types of miRNAs have been reported in patients with ALI. Some miRNAs suppress cellular injury and accelerate the recovery of ALI by targeting specific molecules and decreasing excessive immune response. For this reason, miRNAs are proposed as potential biomarkers for ALI and as therapeutic targets for this disease. This review summarizes current evidence supporting the role of miRNAs in ALI.


2019 ◽  
Vol 244 (2) ◽  
pp. 73-82 ◽  
Author(s):  
Xue Gong ◽  
Gengze Wu ◽  
Chunyu Zeng

Over the last several decades, cardiovascular diseases largely increase the morbidity and mortality especially in developed countries, affecting millions of people worldwide. Although extensive work over the last two decades attempted to decipher the molecular network of regulating the pathogenesis and progression of these diseases, evidences from clinical trials with newly revealed targets failed to show more evidently salutary effects, indicating the inefficiency of understanding the complete regulatory landscape. Recent studies have shifted their focus from coding genes to the non-coding ones, which consist of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and the lately re-discovered a unique group of RNAs—circular RNAs (circRNAs). As the focus now has been shifted to the newly identified group of non-coding RNAs, circRNAs exhibit stability, highly conservation and relative enriched expression abundance in some cases, which are distinct from their cognate linear counterparts—lncRNAs. So far, emerging evidence begins to support the critical role of circRNAs in organogenesis and pathogenesis as exemplified in the central nervous system, and could be just as implicative in the cardiovascular system, suggesting a therapeutic perspective in related diseases. Impact statement Circular RNAs are important regulators of multiple biological processes such as organogenesis and oncogenesis. Although the bulk of concerning studies focused on revealing their diversified roles in various types of cancers, reports began to accumulate in cardiovascular field these days. We summarize circular RNAs implicated in cardiovascular diseases, aiming to highlight the advances in the knowledge of such diseases and their potential of being promising target for diagnosis and therapy.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Ilse Bollaerts ◽  
Jessie Van houcke ◽  
Lien Andries ◽  
Lies De Groef ◽  
Lieve Moons

Damage to the central nervous system (CNS) is one of the leading causes of morbidity and mortality in elderly, as repair after lesions or neurodegenerative disease usually fails because of the limited capacity of CNS regeneration. The causes underlying this limited regenerative potential are multifactorial, but one critical aspect is neuroinflammation. Although classically considered as harmful, it is now becoming increasingly clear that inflammation can also promote regeneration, if the appropriate context is provided. Here, we review the current knowledge on how acute inflammation is intertwined with axonal regeneration, an important component of CNS repair. After optic nerve or spinal cord injury, inflammatory stimulation and/or modification greatly improve the regenerative outcome in rodents. Moreover, the hypothesis of a beneficial role of inflammation is further supported by evidence from adult zebrafish, which possess the remarkable capability to repair CNS lesions and even restore functionality. Lastly, we shed light on the impact of aging processes on the regenerative capacity in the CNS of mammals and zebrafish. As aging not only affects the CNS, but also the immune system, the regeneration potential is expected to further decline in aged individuals, an element that should definitely be considered in the search for novel therapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document